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ABSTRACT

The recovery of a high resolution geopotential from satellite
gradiometer observations motivates the examination of high performance
computational techniques. The primary subject matter addresses specifically
the use of satellite gradiometer and GPS observations to form and invert the
normal matrix associated with a large degree and order geopotential solution.
Memory resident and out-of-core parallel linear algebra techniques along with
data parallel batch algorithms form the foundation of the least squares
application structure. A secondary topic includes the adoption of object
oriented programming techniques to enhance modularity and reusability of
code. Applications implementing the parallel and object oriented methods
successfully calculate the degree variance for a degree and order 110
geopotential solution on 32 processors of the Cray T3E. The memory resident
gradiometer application exhibits an overall application peﬁoﬁnmce of 5.4
Gflops, and the out-of-core linear solver exhibits an overall performance of
2.4 Gflops. The combination solution derived from a sun synchronous

gradiometer orbit produce average geoid height variances of 17 millimeters.



1. Introduction

The recovery of a high resolution geopotential model from satellite
observations motivates the examination of high performance computational
techniques. The recently accepted Gravity Recovery and Climate Experiment
(GRACE) mission will soon provide direct observations of the gravity field
from an orbiting platform [NASA, 1997]. Previous studies demonstrate that
the rigorous, single point analyses as defined in Section 1.1.2 produce the best
gravity field solutions [Bettadpur, 1993; Koop, 1993]. Computational cost
and memory limitations of serial computer architectures restrict the rigorous
analysis of gravity field models to approximately 100 kilometer resolution.
Next-generation data analysis techniques that resolve the high frequency
components of the gravity field must be developed in preparation of future
dedicated gravity missions [CIGAR, 1996]. This interdisciplinary research
consists of an investigation into the appropriate algorithmic design required to
recover high resolution geopotential coefficients using rigorous analysis

methods.

1.1 Global Gravity Field Determination
Accurate modeling of the global gravity field is of fundamental

importance due to the wide variety of geodynamic processes exhibited in the
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gravity signal. Gravity field anomalies provide one of the few direct
manifestations of interior processes such as mantle convection and lithosphere
motion. Temporal changes in the gravity field indicate changes in sea level
and climate due to mass transport between the oceans, ice sheets and
atmosphere [McNutt, 1990]. Oceanography requires an accurate geoid for the
separation of mean circulation from the tidal and time-varying ocean
circulation effects [Zlotnicki, 1990]. The ability to measure the gravity field
from low orbit provides an excellent opportunity to observe these processes on
a global scale. A comprehensive survey of past events in gravity field

determination on local and global scales is presented by Nerem et al [1996].

1.1.1 Satellite Techniques

The development of global gravity field models relies heavily on the
satellite tracking measurements. The non-uniform gravity field of the Earth
perturbs the satellite motion. Range and range-rate observations to the
satellite record the first and second time integral of the gravity force. The
satellite tracking measurements are especially sensitive to the low frequency
signal in the gravity field as the time integral smoothes over much of the
gravity field’s high frequency information. High precision observations

performed by satellite laser ranging (SLR) enable the recovery of Earth



orientation, temporal variations in low frequency gravity field signals and
allow confirmation of certain relativistic effects [Tapley, 1993]. The Global
Positioning System (GPS) supplements conventional SLR tracking by
providing near-continuous coverage of the Earth and low orbiting satellites.

Resolution of the higher frequency components requires the use of
other measurement types. Satellite altimetry measures the local geoid height
over the oceans. Measurements made on the surface of the Earth measure local
accelerations. The high resolution measurements are complimentary to the
low resolution satellite tracking data types in the global gravity field solution.
The quality of altimetry observations from missions such as TOPEX/Poseidon
depends on the knowledge of the ocean topography, atmospheric refraction
and satellite trajectory [Nerem et al, 1996].

Measurements of the gravity gradient, or the spatial rate or change of
gravitational acceleration, also provide high resolution observations of the
gravity field. Two measurement types observe the gravity gradient. The
satellite gradiometer directly measures the gradient by differencing the
measurements of accelerometers mounted on a satellite platform. The
satellite-to-satellite tracking observable measures the integral of acceleration
differences by monitoring the inter-satellite range and range rate. Rummel

[1986] provides a discussion of both concepts.
3



Satellite gradiometry employs pairs of linear accelerometers mounted
symmetrically about the satellite center of mass. The gradient signal remains
after eliminating common accelerations. Two instrument concepts are being
investigated in preparation for a potential gradiometer mission. The NASA
GEOID mission will employ a cryogenic gradiometer to achieve high gradient
resolution [Paik, 1996]. The European Gravity and Ocean Circulation
Explorer (GOCE) is a European Space Agency (ESA) mission implementing
the GRADIO type instrument originally designed for the ARISTOTELES
gravity mission [Rummel, 1996].

Satellite gradiometry is more sensitive to the high frequency signal of
the geopotential than the satellite-to-satellite tracking method. A typical
gradiometer mission at an altitude of 200 kilometers will be capable of
resolving the gravity field to 50-100 km [Schrama, 1991]. Super-cooling
requirements and atmospheric drag effects at low altitudes limit the duration
of satellite gradiometer missions to less than one year. A gradiometer mission
would provide a snapshot in time of the global gravity field. The medium to
high resolution images are important to geodesist investigating solid earth
physics on long temporal scales and to oceanographers studying steady-state

ocean circulation patterns.



Satellite-to-satellite tracking techniques recover range or range rate
information between two co-orbiting satellites separated by only a few degrees
of arc. The inter-satellite measurements are time integrals of the gravity
gradient between the satellites. The NASA GRACE mission scheduled to fly
in 2001 employs a satellite-to-satellite microwave tracking system [Davis et
al., 1996].

The satellite-to-satellite observations are less sensitive to altitude than
the gradiometer observation. A higher altitude orbit allows mission lifespans
of 3 to § years. A satellite-to-satellite mission will produce a series of images
illustrating the time-varying nature of the gravity field. The examination of
dynamic processes such as the movement of the water mass between the

Earth, atmosphere and oceans may proceed from a new perspective.

1.1.2 Analysis Methods for Global Solutions

The global gravity field analysis computes the least squares estimate of
geopotential parameters given an observation data set. The spherical
harmonic series provides an accurate representation of the geopotential
function. As such, the harmonic coefficients comprise the set of estimated
parameters. Section 2.3 describes more fully the spherical harmonic model,

and section 3.2 addresses the least squares technique.



The distribution of observations over the surface of the Earth further
distinguishes the analysis approach. Single point computation methods
perform the most rigorous reduction of observational data. A point-wise
evaluation of the dynamic and observation models occurs along the satellite
trajectory according to arbitrary dynamic and observation models. The
analysis proceeds without the introduction of simplifications or assumptions.
The processing cost associated with the least squares techniques may restrict
the size of the single point analysis. The least squares technique requires the
formation of a large, dense linear system to calculate the parameter updates.
For the estimation of a large number of parameters, both the computational
cost and memory requirements may become prohibitive.

Grid computation methods exploit natural symmetries in the
mathematical model of the gravity field to greatly reduce computational costs.
Colombo [1981] demonstrated that the normal matrix reduces to a block
diagonal form by assuming an observation distribution which coincided with
the equiangular points on a sphere. The same normal matrix structure results
from data collected along a repeat ground track orbit with observations taken
at a regular sampling interval [Koop, 1993]. The analysis of real data requires

the preprocessing of irregularly sampled data taken along an imperfect repeat



orbit. The process of forming block averages and normal points introduces
error into the estimate.

Grid computation methods have been useful in performing error
analysis of proposed dedicated gravity missions. Many authors have
illustrated the necessity of combining satellite tracking data and gradiometer
observations to produce an unbiased estimate of the gravity field to high
degree and order [Schrama, 1991; Koop, 1993; Visser, 1994]. Additional
information is required (e.g., Kaula’s rule of thumb) to recover a solution from

gradiometer missions located in a non-polar orbit.

1.2 Computational Challenges

The development of computational methods capable of reducing
satellite observations into useful gravity field information constitutes a
significant computational challenge. The challenge arises from both the large
number of observations and the large number of unknown parameters.
Assuming five second sampling intervals, a six month GPS-tracked, satellite
gradiometer mission would produce over eight million combined gradient and
GPS observations [Schuh et al, 1996]. A geopotential expansion to degree
and order 180 possesses 32,761 terms. The computer resources required to

compute the linear least squares estimate of the gravity coefficients from the



described scenario are significant. Over 8 Gbytes of computer memory (64-bit
precision floats) are required and approximately 10 quadrillion (10'%) floating
point operations must be performed. Current cutting-edge distributed memory
parallel architectures which execute at hundreds of Gflops require days of
execution time to finish the problem. Ultimately, the rigorous analysis of such
data necessitates the use teraflop and petaflop computer architectures.
Fortunately, the size of the gravity field model may be adjusted to
match the performance capabilities of the available architectures. The total
cost of the problem is driven primarily by the time required to accumulate the
observation equations into the normal matrix. The cost of forming the dense
normal equations using rigorous methods is known to be mn® where m is the
number of observations and 7 is the number of geopotential parameters to be
estimated. Figure 1 presents the amount of wall clock time required to
accumulate one million observations into the normal matrix associated with a
given maximum degree and order gravity field expansion. The different
curves represent varying levels of computational performance. Figure 2
presents the amount of processor memory required to store the normal matrix

associated with a given maximum degree and order expansion.
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Figure 2 Memory Requirements for Normal Equations

The design of high performance satellite applications must also
consider the implementation of the satellite dynamic models. The total work
required to model the physical system is insignificant when compared to the

total cost of the least squares operations. However, once the linear algebra
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operations have been effectively optimized for performance on a parallel
computer, the physical model cost dominates the wall-clock execution time of
the application. An effective application must address the optimization of

satellite propagation operations as well.

1.3 High Performance Computing

Parallel processing provides a practical solution to the computational
cost difficulties associated with the gravity field problem. Computer industry
projections predict that advances in current technology will lead to only a
doubling or tripling of performance improvement in single processor
technology [Astfalk, 1993]. Only the aggregate power of many processors
executing concurrently will provide the performance required to solve the

gravity field problem.

1.3.1 Amdahl’s Law

Amdahl’s Law [Amdahl, 1967] defined the early years of parallel
computing. The hypothesis states that the maximum speed-up of a parallel
algorithm is bound by the reciprocal of the time required to execute any serial
region within the algorithm regardless of the number of processors (See Figure
3). By this measure, significant performance increases would depend on the

elimination of serial regions of execution. Since many program activities and
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certain algorithms are serial in nature (e.g., numerical integration), the benefits
of parallel processing were thought to be minimal.

A revolution in parallel processing theory occurred after Gustafson et
al [1988] exposed an implicit assumption in Amdahl’s original statement.
Amdahl assumes that the problem size remained constant as the parallel
region is distributed across an increasing number of processors. In practice,
however, the problem size generally expands to the capacity of available
memory. A reformulated relationship includes the scaling of the problem size
with the number processors. The scaled Amdahl’s Law demonstrates that
scalable algorithms, or algorithms which maintain efficiency as the number of

processors increase, could be developed (See Figure 3).
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Allow P to be the number of processors allocated to solve the problem.
Amdahl’s Law

Allow s to be the time spent by a serial processor executing the serial region
and p to be the time spent by a serial processor executing the parallel region.
The speed-up (defined as the serial time divided by the parallel time) as given
by Amdahl’s Law is,

S(P) = s+p

ey
s+
P
which simplifies to the form,

P
S(P)= ——— @
s(P-1)+1
As the number of processors approaches infinity, the speed-up is bounded

by-l—.
s

Scaled Amdahl’s Law

Allow s’ to be the time spent by a parallel processor executing the serial
region and p’ to be the time spent by a parallel processor executing the parallel
region. The speed-up as given by Scaled Amdahl’s Law is,

s'+ Pp'
spy=22 3)
s'"+p
which simplifies to the form,
S(P)=s'+P(l1-5s") 4)

The upper bound of the speed-up is mow a function of the number of
processors. For a perfectly parallel problem (s’ equal to zero), the speed-up is
equal to the number of processors.

Figure 3 Derivation of Amdahl’s and Scaled Amdahl’s Laws
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1.3.2 Algorithmic Models

A new algorithmic model is required when moving from serial to
parallel computing. Serial programs are designed according to the random-
access memory (RAM) model which consists of a central processing unit and
an attached memory. The term random-access refers to the ability to retrieve
data elements from memory in an arbitrary order. The RAM model is not
suitable for parallel algorithms since issues such as computational concurrency
and interprocessor communication are not addressed [J4 Ja, 1992].

The development of a parallel model begins with the categorization of
parallel architectures. A common method is to define architectures according
to the number of instruction streams and data streams present in the model.
The single instruction/single data (SISD) class issues a single sequence of
instructions which operate on a single stream of data. The single
instruction/multiple data (SIMD) class issues the identical sequence of
instructions to multiple processors each of which operates on different streams
of data. The multiple instruction/single data (MISD) class issues different
sequences of instructions to multiple processors each of which must operate
on the identical stream of data. The multiple instruction/multiple data
(MIMD) class issues different sequences of instructions to multiple processors

each of which operates on different streams of data. The SISD class
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corresponds to the RAM programming model described previously. SIMD
architectures experienced a wave of popularity in the late 1980°s and early
1990°s, and the SIMD style of programming is still prevalent. The major
hardware vendors, however, have moved away from SIMD and currently
produce architectures which support the more powerful MIMD processing
style.

Two communication models have evolved to support the movement of
data between processors in a parallel environment. The shared memory model
views the architecture as a collection of processors which share access to a
global memory unit. An equal algorithmic cost is assigned to the retrieval of a
data element located in any position of global memory. The message passing
model views the architecture as a collection of processors each of which
possesses a local memory unit. Data movement between processors occurs in
the form of messages. The message is initiated by a send operation on the
source processor and completed by a receive operation on the destination
processor. The algorithmic cost of the communication depends on the amount
of data communicated and the distance between the source and destination

Processors.
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1.3.3 Hardware

The computational performance of any algorithm ultimately depends
on the hardware architecture. The primary hardware component which effects
performance is the central processing unit (CPU). Two fundamental types of
CPUs exist. Scalar processors perform a single operation at a time. Vector
processors are fine grained parallel units which pipeline the stages of floating
point computations. High performance requires the formulation of the
algorithm in terms of the data access patterns best suited for each processor.
The pipelining property of vector processors requires long contiguous vectors
of data. The scalar processors rely on additional hardware mechanisms to
insure the fast availability of data before the start of the actual computation.

A second major hardware component is RAM memory. Two types of
memory organization exist. Shared memory architectures share a common
memory unit and guarantee equal access time between any processor and any
memory location. Distributed memory architectures allocate different physical
memory units to each of the processors. Access to a processor’s local memory
is analogous to conventional single processor architectures. Remote memory

units are accessed through network communications at a substantially higher

cost.
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Shared memory, vector processor architectures reflect the state of the
art in conventional supercomputing. Computers such as the Cray Y-MP and
Cray T90 have a long record of reliability and superior performance.
However, the shared memory computer suffers from an inherent lack of
scalability due to the equal cost restriction on memory access [Astfalk, 1993].
As a result, the shared memory architectures will not achieve the level of
performance required for next generation, gravity field applications.
Distributed memory, scalar processor architectures reflect the next generation
in supercomputing. Scalable demonstration architectures such as the Cray
T3D and Intel iPSC/2 lead to the development of teraflop production systems

such as the Cray T3E and Intel Paragon.

1.3.4 Software

Given the wide variety of parallel systems, software should be
developed in a portable and maintainable manner. Portability refers to the
ability to execute the same high level algorithm on any machine without code
modifications. Maintainability refers to the ease with which the software may
be modified and enhanced. In some respects, maintainability is a measure of
the complexity of the code in terms of number of lines, readability, etc. The

discussion of portability leads to an interesting paradox. As mentioned
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previously, the algorithm must match the hardware to guarantee performance.
However, portability requires that no architecture specific language appear in
the algorithm. These two seemingly mutual exclusive items are reconciled in

the advanced programming concepts of standardized libraries and object
oriented programming.
1.3.4.1 Standardized Libraries

A standardized library establishes an interface to a set of well-defined
computational primitives. Architecture dependent parameters are purposely
omitted from the interface to facilitate implementation of the library on a
variety of different architectures. The standard provides numerous
advantages to application developers and hardware vendors. Applications
which are designed around standards can be assured of executing efficiently
on any platform which supports the standard. Hardware vendors may
implement the standard in such a way to exploit the performance characteristic
of their machine. The gravity field problem benefits from two specific
standards.

The Basic Linear Algebra Subprograms (BLAS) provide single
processor implementations of dense linear algebra operations. The original set
of subroutine calls described by Hanson [1972] proved insufficient to fully

exploit the performance capabilities of different architecture types. Higher
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level operations capable of encapsulating architecture specific performance
characteristics have been established [Dongarra, 1988] and will be presented
in later chapters. For architectures on which these routines have been
optimized for performance, the BLAS comprise the components of highly
effective libraries and applications. FORTRAN source code is available for
architectures which do not posses optimized BLAS calls. The software
libraries EISPACK, LINPACK and LAPACK are examples of serial libraries
built upon the BLAS [Dongarra, 1992].

The Message Passing Interface (MPI) library establishes a standard to
facilitate portability for message passing parallel applications [Snir et al,
1996]. MPI provides a common set of communication routines upon which
higher level routines and libraries may be layered. While a relatively new
standard, virtually all major distributed architectures support an MPI
implementation. In addition, a generic MPI implementation is available
[Gropp, 1996].
1.3.4.2 Object Oriented Programming

The object oriented programming (OOP) style establishes a framework
within which highly useable and maintainable software may be developed.
Application development centers around the manipulation of language

abstractions called objects. The objects are programming language constructs
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which represent the mathematical or physical components of the problem. A
distinguishing characteristic of OOP is the degree to which program
complexity is hidden from the programmer. The data and algorithms
associated with the object’s functionality are hidden, or encapsulated, within a
single, modular construct. Interactions between the object and an application
program are restricted to well-defined, user interface routines, or methods,
which reflect the natural functionality of the modeled system component.

OOP provides several significant advantages over conventional
structured programming techniques. Subroutines in large and complex
applications usually require long call sequences and/or many global variables
to pass the necessary input and output data. The organization of the data into
objects reduces the number of call sequence parameters and the dependency
on global variables. The resulting code is more readable and easier to
maintain. Also, since objects are specifically designed according to the
definition of system components, the code more closely resemble the natural
expression of the algorithm. The encapsulation of data and functionality
creates a modularity which isolates higher level algorithms from programming
errors and changes in object implementation. The modularity is also ideally

suited for incorporation into software libraries. The programming flexibility
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provided by such a library permits the rapid development of new and different
applications.

The implementation of OOP using a structured programming language
such as C or FORTRAN requires self-discipline in the use of conventional
programming constructs. Data structures contain the object’s data while
subroutines provide the object’s functionality. However, protection of hidden
object components from direct access by high level routine cannot be enforced
by the compiler as is the case in object oriented languages such as C++ and
SmallTalk. In general, any access of object components in a manner other
than specified by the object methods will lead to unpredictable results.

The development of an Object Oriented Precision Orbit Determination
(OOPOD) library begins with the establishment of two general types of
objects, or classes. The physical class abstracts in a generic manner the
physical entities which comprise the satellite environment. The properties of a
physical class object are completely specified by a user-supplied description of
the modeled object and its environment. For example, the properties of a
satellite object correspond to the physical characteristics of the satellite (mass,
dimensions, moments of inertia, etc.) and the forces acting on the satellite
(Earth gravity, drag, moon, etc.). The mathematical class abstracts in a

generic manner the mathematical techniques used to manipulate data derived
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from the physical system. Mathematical class properties are partially specified
by a user-supplied description of the mathematical technique. Additional
information must be extracted from associated physical objects to complete
the mathematical object description. For example, the properties of a
multistep numerical integration routines include the characteristics solely
associated with the integrator (starting convergence criteria, grid size, order of
integration method, etc.) and data extracted from the “to be propagated”
satellite object (dimension of integration vector, initial state, equations of
motion derived from list of forces, etc.)

The existence of OOPOD library objects permits the rapid
development of application code. Given a conceptual description of a
precision orbit determination problem, the development of the corresponding
OOPOD application consists of four steps.

1.Model the physical entities in the problem by creating physical class

objects using the appropriate physical object creation methods
according to the desired model parameters.

2 Initialize the mathematical techniques by creating mathematical class

objects using the appropriate mathematical object creation methods

according to desired object functionality.
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3.Fully realize the mathematical class objects through associations
with physical objects using the appropriate mathematical object
realization methods.
4.Specify the POD algorithm in terms of the physical and
mathematical object methods according to desired application
functionality.
Chapter 2 and Chapter 3 describe the physical and mathematical object
in conjunction with the description of application components. Prototypes of
the object methods use standard C syntax. A complete list of all object

methods as proposed by this research in provided in Appendix C.

1.3.5 Parallel Linear Algebra

A vparallel linear algebra library must fulﬁll a significant list of
expectations. A library implementation must include the necessary
interprocessor communication without sacrificing portability and high
performance. The library must also possess a flexible interface which can
support a wide variety of applications which distribute data in very different
ways. Two groups contributing significantly to the development of parallel

linear algebra libraries are the ScaLAPACK project and the PLAPACK

project.
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The ScaLAPACK project is a combined effort between the University
of Tennessee Computer Science Department and Oak Ridge National
Laboratory [Dongarra, 1997]. The ScaLAPACK package is a FORTRAN
library built upon the BLAS. Matrix elements are distributed over the
processors in a block-cyclic manner. Communication between processors
occurs via the Basic Linear Algebra Communication Subprograms (BLACS),
a proposed communication standard developed specifically for the
ScaLAPACK library. The ScaLAPACK project began in 1989.

The PLAPACK project originates from the University of Texas at
Austin [van de Geijn, 1997]. The PLAPACK package is a C library built
upon the BLAS. Matrix elements are distributed over the processor array
according to the principle of Physically Based Matrix Distribution (PBMD)
[Edwards, 1995]. PBMD permits the abstraction of different data
distributions which are naturally related by collective communication
operations. The PLAPACK project began in 1996.
1.3.5.1 Parallel Out-of-Core Processing

The speed of parallel computers permit the solution of problem sizes
which exceed the capacity of available memory. As a result, interest in
parallel out-of-core (OOC) processing techniques has increased. Many out-of-

core dense linear solvers have been developed [Klimkowski, 1995], and
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parallel linear algebra library developers are beginning to advertise out-of-core
functionality as part of their packages [Dongarra, 1997].

Out-of-core linear algebra implementations may be differentiated by
the shape of the submatrix brought into memory for processing. Slab-based
algorithms decompose the matrix one-dimensionally and bring an entire row
or column panel into memory. While beneficial for pivoting operations in
non-symmetric dense solvers, the slab-based approach possesses a greater I/O
overhead for large problem sizes. Block-based algorithms decompose the
matrix two-dimensionally and read approximately square matrix blocks into
memory for processing. While hindering pivoting operations, the block based
algorithms minimizes the I/O to computation ratio for large problems.

Another consideration is the amount of the data to read into memory at
a given time. Conventional approaches to OOC functionality emphasize the
communication of data from disk to memory concurrent with computational
activity. This overlapping of communication and computation hides much of
the I/O traffic. However, an additional level of complexity is added to the
program due to double buffering operations. Overlapping communication also
requires memory to be allocated to IO operations instead of computations
which leads to deteriorated algorithmic performance. Klimkowski [1995]

demonstrated a linear solver which allocated a significant portion of memory
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_-ta computational activity and exposed much of the I/O. Performance results
demonstrated the I/O cost in such a scheme to be approximately 10 to 20% of

the total computational cost.

1.4 Related Interdisciplinary Work

This work builds directly upon the dissertation research of Dr. Srinivas
Bettadpur at the University of Texas at Austin. Dr. Bettadpur examines the
implementation of a high performance satellite gradiometer application on
shared-memory vector processor. The fine grained nature of the vector
processors permit the investigation of high performance spherical harmonic
synthesis algorithms and least squares estimation techniques. The research
results demonstrate a 97.8% efficiency for memory resident applications and a
89.6% efficiency for out-of-core applications executed on an 8 processor Cray
Y-MP.

The propagation of satellite trajectories is perhaps the most common
component among all satellite applications. The parallelism of the trajectory
propagation process may be the most difficult as well due to the fine
granularity of the computations. Two groups published results from
applications which implement parallel propagation techniques. The Naval

Research Laboratory exploits parallel computing to enhance capabilities of
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correlating observations with objects in the Space Command database of
orbiting objects [Coffey, 1996]. A brute force approach computes the
Lambert solution of every uncorrelated pair of observations in the search for
orbits which correspond to previously known objects or which match other
uncorrelated observation to within some user-specified criteria. A master
processor distributes uncorrelated pairs of observations to slave processors
which perform the computations. Results on the IBM SP2 located at the Maui
High Performance Computing Center (MHPCC) demonstrate satisfactory
results both in the number of recovered orbits and in the efficiency of the
method through 128 processors.

Draper Labs uses parallel computing to search for stable configurations
for large satellite constellations [Wallace, 1995]. Populations of constellation
configurations are evaluated using genetic algorithms. A master-slave
algorithm distributes the work of both the analytic trajectory propagation and
the genetic algorithm cost evaluation. Results on a heterogeneous workstation
network at Draper Labs demonstrate good efficiency over a small number of
Processors.

The above projects possess similar advantages and disadvantages. The
master-slave paradigm inherently performs dynamic load balancing to keep all

the processors active. However, the method is not scalable to a large number

26



of processors due to the communication requirements between each slave
processor and the master. Also, the problem size of the individual tasks are
limited by the performance capabilities of the individual processors. The
master-slave paradigm is useful in the distribution of many small tasks to a
moderate number of processors, but the method becomes ineffective for large
problem sizes or large number of processors.

The Jet Propulsion Laboratory (JPL) performed research similar to this
work by completing the determination of a Venus gravity field complete to
degree and order 90 on the 256-processor Cray T3D [Konopliv, 1995]. Data
from the Magellan and Pioneer Venus Orbiter missions was processed using a
modified version of JPL’s Orbit Determination Program (ODP). The global
processor array was partitioned into groups with each group responsible for
observation equation generation and estimation of sub-arc parameters.
Information relevant to global parameters was accumulated using Given’s
rotations into a information matrix wrapped by rows across a one-dimensional
mapping of the global processor array. Parallel accumulation was
accomplished by pipelining the communication of single observation arrays
along the one-dimensional mapping. Performance results demonstrated a two

order of magnitude speed-up over serial processing techniques although
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absolute performance figures were not presented nor could be calculated from
the available information.

The European Space Agency (ESA) through the work of the
Consortium for the Investigation of Gravity Anomaly Recovery (CIGAR)
recognizes the processing difficulties associated with the gravity field
problem, but suggest an alternative approach to overcoming the computational
difficulties. The group postulates that future computational capabilities will
be insufficient to formulate a set of normal equations for the expected problem
sizes [Schuh, 1996]. A preconditioned conjugate gradient (CG) method
would avoid the explicit formation of normal equations by operating directly
on the linear system of observation equations (e.g., y = Hx). This method
can perform the single point computations required for a rigorous analysis of
data. Results demonstrate the successful recovery of geopotential information
to degree and order 50 on serial processors from simulated combination
gradiometer and GPS observables.

The ability to perform single point computations and reduced memory
cost justify further study of the CG method. However, certain difficulties may
preclude use of this approach. The CG method is a iterative method which
requires the generation of the full set of observation equations on each

iteration. The cost of forming the observation equations is significant for the
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number of observations expected from the dedicated gravity missions. Also,
covariance information which provides an important measure of the formal

variance of the estimate may not be easily extracted from this method.

1.5 Research Goals and Contributions

The development of proof-of-concept software tools capable of
analyzing satellite gradiometer data motivates this research. Conventional
analysis tools are implemented on serial architectures but suffer the processing
cost and memory restrictions described previously. New software tools
designed to exploit high performance distributed memory parallel
architectures will permit rigorous gravity field analyses. The rigorous single
point computation methods are necessary to recover the most accurate gravity
field solution.

This research seeks the following goals:

1.The understanding of the implementation techniques required to

develop high performance satellite applications on scalar
architectures.

2.The understanding of the implementation techﬁiques required to

develop high performance satellite applications on distributed

memory architectures.

29



3.The understanding of the implementation techniques required to
develop high performance OOC satellite algorithms on distributed
memory architectures.

4.The production of a gradiometer application capable of performing

covariance error analyses for high resolution gravity fields.

5.The verification of computational techniques by performing an error

analysis of combination gradiometer and GPS data.

The contributions of this research reflect the interdisciplinary nature of
the investigation. The integration of high performance computational
techniques into a satellite application requires an understanding of
computational performance issues and their impact on traditional satellite
algorithms. The satellite application produced by this research implements
distributed memory parallel accumulation and linear system solve algorithms
which effectively addresses all performance issues from single processor
execution to out-of-core methods. This work presents an effective
implementation of data parallel concurrency in the numerical integration of
satellite trajectories and generation of gravity field observation equations. A
generalized object oriented framework for satellite applications encapsulates
the software complexity and permits the expression of satellite algorithms in a

natural manner.
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Separate work in the individual disciplines of computational science
and satellite geodesy complements the interdisciplinary contributions. The
development of PLAPACK Virtual Object functionality as implemented by
this research yields a generalized out-of-core library for dense linear algebra.
Covariance error analyses for combination gravity field solutions conducted

by rigorous methods verify previous studies using grid methods.

1.6 Solution Metrics

1.6.1 Speed-Up and Efficiency

The performance of the parallel application is measured in terms of
speed-up and efficiency. Speed-up quantifies the gain in processing speed of a
parallel application relative to a serial application that performs the same
function. Formally, speed-up is defined as the wall-clock time required to
complete the serial application divided by the serial wall-clock time required
to complete the parallel application. The parameter n specifies the problem
size, and the parameter p specifies the number of processors.

O
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Efficiency quantifies the effective use of processor resources relative
to the serial algorithm. Formally, efficiency is defined as the speed-up divided

by the number of processors.

S(n, p)
p

E(n,p)=

As problem sizes grow large, limits on computational resources
prohibit the use of serial applications as benchmarks for parallel applications.
In these cases, speed-up and efficiency are often reported in terms of
operations per second. The wall-clock time for the parallel application is
measured and divided by the operation count of the algorithm to yield the
aggregate processing speed. The per processor processing speed is recovered
by dividing the aggregate processing speed by the number of processors. The
application performance is compared against the peak speed of the processor

to provide speed-up and efficiency information.

1.6.2 Error Degree Variance and Degree RMS

The variances recovered from the inverted normal matrix for gravity
field solutions are commonly reported in terms of degree variances. The error
degree variance presented in Equation (7) is expressed in terms of the sum of

coefficient variances corresponding to degree /.
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The error degree variance is divided by the number of coefficients at
degree / to yield the error degree-order variance as presented in Equation (8).

2
—3 o,
g, =
Y

The square root of the error degree-order variance yields the error

RMS per coefficient per degree.

1.6.3 Geoid Height Error
Brun’s formula specifies the difference in geoid heights between two
geopotential fields at a certain location on the surface of the Earth [Vanicek,

1986]. The parameter y, represents the normal gravity on the reference

ellipsoid, and ¢ and A represent the latitude and longitude of the subsurface

point on the Earth.

2.) - Uz (¢a '1)_ Ul (¢’ ’1)

0

Ah(g,

Equation (9) may be expressed in terms of the geopotential coefficient

differences AC,, and AS, .
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On the surface of the Earth, r=a, and y, = Equation (10)

"PN I t

reduces to a simpler form.

bnax !
Ak(g,4)=a.D 3 P, (sinp]AC,, cosmA + AS,, sinma] (11)
=0 m=0

To derive the expression for the variance in geoid height in terms of

the coefficient covariance, define @, and S,, as in Equation (12).

@,, =a,bB, (sing)cosml

12
B =a.B, (Siﬂ ¢)Sin mA (12)

The difference in geoid heights and the square of the difference may be

expressed in terms of a dot product between the parameters ,, and f,, and

the geopotential coefficient differences AC,, and AS,,.

AC
Ab(p,2)=[a ,3{ _:|=AT§x

AR (g,4)=(ATE)ATE)"
=AT&&TA

(14)

The variance of the geoid height is determined by applying the
expectation operator to Equation (14). The matrix P specifies the covariance

matrix associated with the estimate of the geopotential coefficients.
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E[AR’ (§,2)]= E[A&eex" A]
= ATE[&&" A

E[AR?(8,4)]= ATPA

The remainder of this document presents a detailed description of the
mathematical and computational methods used in this research. Chapter 2
presents the relationships describing the dynamical models and physical
objects. Chapter 3 presents the mathematical and computational techniques
required to manipulate and recover model parameters. Chapter 4 focuses on
the parallel methods as applied to the least squares problem and the
observation generation process. Chapter 5 documents the design of the
parallel analysis software. Chapter 6 describes the error analysis for the
satellite gradiometer mission scenarios. Finally, Chapter 7 discusses the

conclusions and recommendations of this research.

35

(15)

(16)



2. Simulation Environment

Simulation of the environment traversed by satellites in low Earth orbit
presents a complicated and challenging task. The system is inherently non-
deterministic due to the countless numbers of perturbing forces and the effects
of processes best described in a stochastic manner. Even so, the problem is
tractable if the researcher permits a statistically quantified and measurable
level of error in the analysis. The resulting physical model can provide insight
into the reactions and interactions of an actual satellite orbiting the Earth.

The comprehensive modeling of the physical environment is beyond
the scope of this research; however, a certain degree of complexity in the
physical model validates the new computational techniques. This research
asserts that demonstration of single point processing capabilities satisfy
complexity requirements. Single point processing assumes nothing about
spatial or temporal symmetries within the environment. Satellite states are
determined according to the numerical integration of arbitrarily complex
dynamic models. Observation models also implement arbitrarily complex
expressions. The use of sophisticated models as required for the processing of

real data would require no modifications in the processing methodology.
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The physical model adopted by this research consists of a non-
spherical gravity field attached to a non-uniformly rotating Earth. The body-
fixed frame is determined in part by the stochastic processes of non-uniform
rotation and polar motion which must be evaluated from the interpolation of
tabular values (see Appendix A). The GPS and gradiometer satellites orbit the
Earth and collect observations according to the point-wise calculations of the

gravity.

2.1 Physical Objects

Physical objects abstract in a generic manner the physical entities
which comprise the satellite environment. Regardless of the degree of
specialization, each physical object shares a common set of properties which
specify the functionality of the object within the simulated environment. The
observable property specifies whether the object may be treated as an
observable quantity in the estimation of model parameters. The dynamic
property specifies whether the object’s state must be determined by numerical
integration methods. The force property specifies whether the object
influences the motion of an orbiting boay. Property values are set at creation

and may be accessed by the inquiry methods provided in Appendix C.
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All physical objects are created and fully realized via a single call to
the object’s creation method. In the following discussion of physical entities,
the associated physical classes and a sampling of object methods will be
described. A complete list of all object methods as proposed by this research

is provided in Appendix C.

2.2 Reference Frames and Coordinate Transformations

The development of mathematical equations to describe the
relationship between physical objects requires the establishment of appropriate
coordinate systems. The equations of motion for a dynamical body are
defined within an inertial coordinate system. An approximation of an inertial
reference system is the celestial reference frame (CRF). The CRF is a spatial
coordinate system realized by a catalogue of extra-galactic radio sources
which show no proper motion [Bock, 1996]. A second reference system is
used to specify the positions and velocities of objects located on or near the
surface of the Earth. The terrestrial reference frame (TRF) is realized by a
catalogue of station positions located on the surface of the Earth. The station
locations form a time-varying polynomial. The configuration of the
polynomial at the chosen epoch defines the instantaneous TRF. The TRF will

be referred to in this work as the geocentric coordinate system.
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The conversion between the CRF and the TRF is accomplished
through a series of plane rotations accounting for the effects of general
precession, nutation, time-varying rotation and polar motion. Deformation
effects of the Earth are neglected in this study. A summary of the rotation
process is presented in Appendix A.

Other reference systems commonly referenced are the topographic
(ENU) system, the radial, transverse, normal (RTN) system, and the
gradiometer system. The topographic system is defined on the surface of the
Earth at longitude A and latitude ¢. The coordinate axes point in the direction
of increasing longitude (East), increasing latitude (North) and increasing
altitude (Up). The RTN system is defined at the center of mass of a satellite in
orbit. The coordinate axes point along the instantaneous radius vector, in the
plane of the orbit orthogonal to the radius vector and normal to the orbit plane.
The gradiometer system is defined by the orientation of the gradiometer with
respect to the satellite. The gradiometer system is offset from the satellite
frame by constant Euler angles v, 0 and ¢.

The coordinate transformation operation is a fundamental component
for satellite application software. Two objects provide tﬁe functionality of the

operation. The first object encapsulates the table look-up process required for
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the Earth orientation parameters. The second object encapsulates the creation

of matrix rotations required for the transformation of state vectors.

int32 EopTable_create ( char* filename,
int32 file_format,
EopTable * table );

int32 EopTable_free ( EopTable * table );

The EopTable object contains the tabular information necessary to
determine the polar motion and sidereal time at a given epoch. The creation
method reads the parameters from the specified file filename with specified

format file_format.

int32 EopTable_calculate ( EopTable table,
float64 epoch );

The EopTable_calculate method performs the table look-up and caches
the results within the object for future use. The data is retrieved via calls to

the inquiry methods listed in Appendix C.

int32 RefFrame_create ( char* filename,
int32 file_format,
RefFrame * frame );

int32 RefFrame_free ( RefFrame * frame );

The RefFrame object contains the information and algorithms necessary
to generate the rotation matrices required to transform position and velocity
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vectors between the geocentric, true-of-date, mean-of-date, and J2000
coordinate systems. The creation routine internally creates an EopTable

according to the specified file filename with specified format file format.

int32 RefFrame_calculate ( int32 set_tod,
float64 epoch,
RefFrame frame );

The RefFrame_calculate method calculates the Earth orientation
parameters and rotation matrices for the specified epoch and caches the results
within the object for future use. If set_tod is set to SET_TOD, the specific
epoch will be considered the true-of-date epoch and the precession and
nutation parameters will be calculated for the epoch. If set_tod is set to
NO_SET_TOD, only the parameters associated with Earth orientation will be

calculated. The data is retrieved via calls to the inquiry methods listed below

and in Appendix C.

int32 RefFrame_J2000_to_meanofdate ( RefFrame frame,
float64 * a);

int32 RefFrame_meanofdate_to_trueofdate ( RefFrame frame,
float64 * a);

int32 RefFrame_trueofdate_to_geocentric ( RefFrame - frame,
float64 * a,
float64 * b );

The above RefFrame methods return rotation matrices between the

J2000 inertial system, the mean-of-date coordinate system and the true-of-date
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coordinate system. The rotation matrices are placed in a and b indexed in

column-major order.

int32 RefFrame_geocentric_to_topographic ( float64 radius,
float64 lambda,
float64 phi,
float64 * a);

int32 RefFrame_geocentric_to_rtn ( float64 * pos,
float64 * vel,
float64 * a);

The above RefFrame methods return rotation matrices based on the

geocentric position. RefFrame_geocentric_to_topographic creates the rotation

matrix from the current geocentric position expressed in spherical coordinates

to the topographic position defined by the

spherical coordinates.

RefFrame_geocentric_to_rtn creates the rotation matrix from the current position

and velocity vectors defined in geocentric coordinates into the radial,

transverse, normal coordinates. The rotation matrices are placed in a indexed

in column-major order.
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int32 RefFrame_general ( float64 psi,
float64 theta,
float64 phi,
float64 * a);

int32 RefFrame_cartesian_to_spherical ( float64 * X,
float64 * radius,
float64 * lambda,
float64 * phi );

int32 RefFrame_spherical to_cartesian ( float64 radius,
float64 lambda,
float64 phi,
float64 * X);

The above RefFrame methods facilitate common coordinate
conversions. RefFrame_general Creates a general rotation matrix based on Euler
angles. The rotation matrix is placed in a indexed in column-major order.
RefFrame_cartesian_to_spherical and RefFrame_spherical_to_cartesian perform the

conversion between spherical and cartesian coordinate systems.

int32 RefFrame_merge ( int32 side,
int32 trans,
float64 * a,
float64 * b );

The RefFrame_merge method merges the two rotation matrices a and b
into a single rotation matrix overwriting a. The valid values of side are LEFT
and RIGHT. The valid values of trans are TRANS and NO_TRANS. Table 1

presents a summary of operations performed by RefFrame_merge.

43



Side Trans Operation

LEFT NO_TRANS a<ba

LEFT TRANS a<—b'a

RIGHT | NO_TRANS a4« ab

RIGHT TRANS a « ab”

Table 1 Summary of Operations for RefFrame_merge

int32 RefFrame_vector ( int32 trans,
float64 * a,
float64 * X);
int32 RefFrame_tensor ( int32 trans,
float64 * a,
float64 * g);
int32 RefFrame_vector_partials ( int32 trans,
float64 * a,
float64 * xp,
int32 length );
int32 RefFrame_tensor_partials ( int32 trans,
float64 * a,
float64 * gp,
int32 length );

The above RefFrame methods perform the coordinate transformation of
vector x or tensor g. The valid values of trans are TRANS and NO_TRANS.
RefFrame_vector_partials and RefFrame_tensor_partials permit the transformation
of the partial derivatives associated with the vector or tensor quantity. The
number of partial derivatives is specified by length. Table 2 and Table 3

present a summary of operations performed by the above member functions.
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The partials are assumed packed in a contiguous array according to the

ordering given in the tables.

Trans Operation Storage
NO_TRANS X Ax xefx, x x]
Eeaan | &8 & &)
G, A, da, loa Sz oa
TRANS xe—ATx xe[x, x x]
LIPR S R R - - ) %]
2, A aai,allz 2, E[&a = 2

Table 2 Summary of Operations for RefFrame_vector and
RefFrame_vector_partials

Trans Operations Storage

NO_TRANS g Agd’ g E[go,o o &0 8 8u gz.z]

L AP AL ie[@_ B B B Bu @]
da, oa, A,

i

TRANS g ATgd ge[go‘o 8o 820 81 & gz.z]

Lz AL Sy ﬁe[@ R B Bu B f%;]
e, o, &,

i

Table 3 Summary of Operations for RefFrame_tensor and
RefFrame_tensor_partials
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The following example illustrates the use of the coordinate
transformation routines. x is a position vector expressed in the RTN
coordinate system at epoch t. The following code fragment demonstrates how

the vector would be converted to the true of date coordinate system.

float64 x[3], a[9], b[9];

RefFrame frame = NULL;

RefFrame_create ( “EOP”, CSR_EOP_FORMAT, & frame )
/*

user code

*/

RefFrame_calculate (NO_SET_TOD, t, frame );
RefFrame_trueofdate_to_geocentric ( frame, a, b, )s
RefFrame_geocentric_to_rtn ( pos, vel, b );
RefFrame_merge ( RIGHT, NO_TRANS, a, b );
RefFrame_vector (TRANS, a, x );

2.3 Geopotential

Many mathematical representations of the geopotential have been
suggested and the associated algorithms were investigated by Bettadpur
[1993] in the context of high performance vector processors. The linear
access patterns required for base function evaluations and series summations

do not lend themselves to high performance on scalar microprocessors.

However, the 8(12) computational cost where / is the maximum degree and

order of the geopotential expansion comprises only lower order terms in the -
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overall cost formulation of the gravity field problem. No single processor
optimization of the spherical harmonic synthesis will be examined, and the
traditional spherical harmonic expression of the geopotential expressed in

Equation (17) will be used.

1
(a—‘) P, . (sin ¢Xf‘,m cosA+S,, sin ,1]

U(r,z,¢>=§i2

1=0 m=o\ T

The gravity field is fixed to the rotating Earth. The evaluation of the
potential and its first and second partial derivatives occurs within the
geocentric reference frame as expressed in spherical coordinates. Perturbing
force and gradient operations require the expression of the potential
directional derivatives in the cartesian frame. An effective conversion from
the spherical coordinates to the topographic system is described by Bettadpur
[1992]. The implementation of the conversion using BLAS operations is

presented in Appendix B.

2.3.1 Legendre Associated Functions

The Legendre associated base functions must be evaluated before the
summation of the spherical harmonic series. The Legendre associated
functions and their derivatives are computed in terms of first and second order

linear recursions. Lundberg [1986] recommends two computationally stable
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algorithms for computing the Legendre associated functions to high degree
and order. The first calculates column ordered recursions along increasing
degree. The second calculates row ordered recursions along increasing order.
The column ordered variant was selected since the column major ordering
corresponds to ordering of matrix elements in FORTRAN. The recursion
formulas are presented in Equation (18) and Equation (19) where / and m

represent the degree and order of the function element.

- 1 21+1
A1,1 = j
2- 50,,_, !

Zm,l =v20+3

- 4% -1
A= 2 _m

2+1Y(-1)?-m?
B, =- ) 2
2/-3 I“—m

- 2-6
F, =\[ 20'"' (I-m)l+m+1)

(18)

>~ I
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int32 Legendre_create ( int32 shape,
int32 degree,
int32 order,
int32 deriv,
Legendre * legendre );
int32 Legendre_free ( L;egendre * legendre %

The Legendre object contains the information and algorithms necessary
to evaluate the Legendre associated functions. The input argument shape
specifies the choice of a triangular or trapezoidal representation of the gravity
field model. The input arguments degree and order specify the maximum
degree and order of the expansion. order is significant only for trapezoidal

fields. The input argument deriv specifies the whether the first and second

derivatives of the Legendre associated functions should be calculated.
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int32 Legendre_calculate ( float64 u,
Legendre lfgendre )s

The Legendre_calculate method calculates the Legendre associated
functions according to the information contained in legendre and caches the
data within the object for future use. The value u is the input argument of the

functions. The data is retrieved via calls to the inquiry methods listed below

and in Appendix C.
int32 Legendre_index ( Legendre legendre,
int32 L
int32 m);

The Legendre_index method returns the linear array index for the degree
I and order m element. This routine permits the user to access data elements
contained in the objects without any knowledge of the internal mapping of the
data elements.. For example, if p specifies the beginning address of the array
containing the Legendre function evaluations, the value corresponding to

degree / and order m would be accessed through the following code fragment.
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float64 * p = NULL;
Legendre legendre = NULL;
Legendre_create ( TRIANGULAR, 30, 30, NO_DERIVATIVES, & legendre );
/*
user code
*/
/* extract array containing computed values */
Legendre_p (legendre, & p );

/* value of 1, m legendre function assigned to value */

value = p [ Legendre_index ( legendre,l, m ) |;

2.3.2 Gravity Field Expansion

int32 GravityField_create ( int32 shape,
int32 degree,
int32 order,
int32 measurement,
int32 coordinates,
char * filename,
int32 file_format,
GravityField * gfield );

int32 GravityField_free ( GravityField * gfield );

The GravityField object contains the information and algorithms
necessary to evaluate gravity field functions. The input argument shape
specifies the choice of a triangular or trapezoidal representation of the gravity
field model. The input arguments degree and order specify the maximum
degree and order of the expansion. order is significant only for trapezoidal

fields. The input argument measurement specifies which series summation to
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calculate. The input argument coordinates specify the reference frame in which
to return the calculated values. Gravity field parameters are read from filename

with specified format file_format.

int32 GravityField_calculate ( float64 radius,
float64 lambda,
float64 phi,
GravityField _gfield );

The GravityField_calculate method calculates the gravity field series
summations according the information contained in gfield and caches the data
within the object for future use. The geocentric location of the evaluation is
specified by spherical coordinates radius, lambda, and phi. The data is retrieved

via calls to the inquiry functions listed in Appendix C.

int32 GravityField_partial_length ( GravityField gfield,
int32 estim_param,
int32 * length );
int32 GravityField_extract_partials ( GravityField gfield,
int32 which_set,
int32 estim_param,
float64 * partials );

The above GravityField methods facilitate the extraction of the partial
derivatives with respect to the geopotential coefficients. The input argument
estim_param specifies the subset of geopotential coefficients to be considered.

The input argument which_set specifies the choice of gravity field summation
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(potential, accelerations, or gradients) from which to extract the partial
derivatives. The number of partial derivatives is returned in lemgth. The
partial derivatives are copied into the vector partials which must be at least

length elements long.

2.4 Orbital Dynamics Model

The dynamics governing orbital motion can be represented as a system
of ordinary differential equations. The satellite trajectory is obtained through
the solution of the associated initial value problem. Each physical system
effecting the satellite trajectory is represented by an additional acceleration
term on the right hand side of the system of ODE’s. The only force
considered in this study is the gravitational accelerations associated with the

non-spherical gravity field fixed to the non-uniformly rotating Earth.

=T

geocentric—»rueofdate

VU(r,4,8)

~|

The motion of the pole due to precession and nutation is negligible
over the arc length of the examined mission scenarios. Therefore, the true-of-
date system corresponding to the initial arc epoch will be defined as the
inertial reference frame. The gravity field accelerations defined in the TRF

must be transformed to the true-of-date system to yield the correct
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accelerations.  The transformation is denoted by Tgeocentric_srueofdate ID
Equation (20).

Trajectory propagation illustrates a complication in the development of
object oriented routines for satellite applications. The satellite is an example
of an abstraction which at first glance appears to exist concurrently as a
physical object and as a mathematical object. As a physical object, the
satellite comprises a part of the physical system. As a mathematical object, it
appears the satellite is integrated according to the equations of motion. Upon
closer look, the trajectory generation process involves not only the satellite but
also requires the several different physical objects which define the equations
of motion. Also, information recovered from the integration process such as
the state transition information is purely mathematical and would not be
considered a defining characteristic of the satellite object. An abstraction was
chosen that allows for the existence of a purely mathematical integration
object which derives part of its structure from the physical system. The
remainder of this section presents the physical satellite object. A discussion of

the integrator object will appear in the next chapter.
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int32 Satellite_create ( float64 epoch,
int32 coordinates,
float64 * state,
Satellite * satellite,
int32 number_forces,
/* vargs */);
int32 Satellite_free ( Satellite * satellite );

The Satellite object contains the information and algorithms necessary
to manipulate the physical satellite object. The input argument coordinates
specifies the input coordinates of the satellite position and velocity specified
by state at the time index specified by epoch. The input argument number_forces
specifies the number of physical objects which perturb the satellite trajectory.
The list of physical objects completes the variable argument list. Valid
physical objects must have their force property set to TRUE. Data contained
within the Satellite object is retrieved via calls to the inquiry methods listed in
Appendix C.

The following code fragment illustrates the creation of a polar orbiting
satellite object moving under the influence of a non-spherical gravity field to

degree and order 120.
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int32 coordinates = ORBITAL_ELEMENTS;

float64 initial_epoch = J1990,
initial_state [ 6 ] = { 7000.0e+0,
1.0e-2,
PI_OVER_2,
0.0e+0,
0.0e+0,
0.0e+0 };
GravityField  gfield = NULL;
Satellite satellite = NULL;
GravityField_create ( TRIANGULAR,
120,
120,
ACCELERATION,
TOPOGRAPHIC,
“JGM3.GEO”,
CSR_GEO_FORMAT,
& gfield );
Satellite_create ( initial_epoch,
coordinates,
initial state,
& satellite,
1, gfield );
/*
user code
*f

Satellite_free ( & satellite );
GravityField_free (& Eﬁeld );

2.5 Observation Models

Two observation datatypes are used in this study. The first datatype is
the satellite gradiometer observation which is sensitive to the medium to high
frequency components of the gravity field. The second type is the GPS high-
low satellite range observation which is sensitive to the low frequency

components of the gravity field. The combination of the two datatypes
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provides a complimentary set of observations for the recovery of a global

geopotential model.

2.5 1 Satellite Gravity Gradiometry

A gradiometer measures of the spatial rate of change of acceleration.
The satellite gradiometer observation is modeled mathematically by forming
the acceleration difference between two points symmetric to the satellite
center of mass [Rummel, 1989]. Linearization of the difference about the
satellite center of mass yields the fundamental equation of the satellite
gradiometer expressed in Equation (21). Utrepresents the gradiometer

potential, @ represents the instantaneous rotation vector of the satellite, ox
represents the baseline of the accelerometers, and 3a represents the

gradiometer observation.

& =[-vU,, +Tx()+ T x (@ x (.))]af
A gradiometer instrument consists of pairs of linear accelerometers
each of which are sensitive along a single axis. Combinations of the
accelerometer pairs may be formed to generate measurements of the different
spatial gradients.
Certain assumptions are made concerning the gradiometer model used

in this study. The satellite is assumed to rotate such that the satellite reference
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frame always aligns to the RTN reference frame. The gradiometer reference
frame maintains a constant offset from the satellite frame according to user
input Euler angles. The rotation effects associated with maintaining the

alignment of the satellite with the RTN system are neglected.

int32 Gradiometer_create ( GravityField gfield,
Satellite satellite,
float64 psi,
float64 theta,
float64 phi,
Gradiometer * gradio );

int32 Gradiometer_free ( Gradiometer * gradio )

The Gradiometer object contains the information and algorithms
necessary to model a satellite gradiometer. The input argument gfield specifies
the GravityField object to be observed by the gradiometer. The input argument
satellite specifies the Satellite object upon which the gradiometer is mounted.
The input arguments psi, theta, and phi specify the Euler angles by which the

gradiometer is offset from the satellite reference frame.

[Et32 Gradiometer_calculate ( Gradiometer gradio ); I

The Gradiometer_calculate method calculates the satellite gradiometer

observation according the information contained in gradio and caches the data
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within the object for future use. The data is retrieved via calls to the inquiry

methods listed in Appendix C.

2.5.2 Satellite-to-Satellite Ranging

The satellite tracking observable used in this study consists of
simplified GPS measurement which returns an unbiased inter-satellite range
measurement. The satellite range information allows the determination of
differential accelerations acting on the high-low satellite system. The
instantaneous slant range observation is expressed in Equation (22) where r
represents the satellite state vector and x, y, z represent the inertial components

of the state vector.

plt)= "FHigh ()= 7o (t)"
plt)= ‘J(xHigh (- xLow(t))+ (yi{igh(t) - yLaw(t))+ (ZHigh (6)- ZLow(t))

The recovery of geopotential information from the slant range

observable requires the evaluation of the partial derivatives with respect to the
initial satellite state and the geopotential coefficients. The derivation of the
partials with respect to the initial satellite states is expressed in Equations (23)

and (24).
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The and — terms specify the changes in the satellite state
F() (1)
given a small perturbation in the initial conditions. This corresponds to the
state transition information between initial epoch #; and current epoch ¢.
(1)
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The derivation of partials with respect to the geopotential coefficients
is expressed in Equations (26), (27) and (28).
apAt) __pt) Fup(t) | ap(8) ()
da Oyt da &, (1) da (26)
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The 55_!) term specifies the change in the satellite state given a small

perturbation in the model parameters. This corresponds to the state transition
information between initial epoch ¢, and current epoch ¢.

a@)

= =0,,(1.4) (29)

The expression for the partials derivatives of the slant range
observations with respect to the geopotential coefficients, «, is given in
Equation (30). The evaluation of the range partials is expressed in the inertial

reference frame.

oplt ap(t
) __oplt) [© e (620)= @, o (1) (30)
e Ty ()t ™
The perturbations of the range observable are caused by errors in the
initial conditions as well as the error in the geopotential coefficients. Both

sets of parameters must simultaneously be estimated to recover the best update
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of the geopotential. However, information derived from the high satellite
provides only a small contribution. The results presented in Chapter 7 neglect

the contribution of the high satellite.

int32 SatTrack_create ( float64 elevation_mask,
MsilibABFS integ high,
MsilibABFS integ_low,
SatTrack * sst );

int32 SatTrack_free ( SatTrack * sst );

The SatTrack object contains the information and algorithms necessary
to calculate the satellite-to-satellite tracking observable. The input argument
elevation_mask specifies the elevation mask with respect to the low satellite
below which no range measurements may be taken. The input arguments
integ high and integ low specify the numerical integration objects associated

with the two satellites.

Iint32 SatTrack_calculate ( SatTrack sst );

The SatTrack_calculate method calculates the high-low satellite tracking
observation according the information contained in gradio and caches the data
within the object for future use. The data is retrieved via calls to the inquiry

methods listed in Appendix C.
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3. Mathematical Environment

The mathematical environment of the satellite application consists of
the operations which manipulate satellite states and recover model parameters.
A discussion of the least squares method as applied to satellite applications
and the numerical methods used to propagate the satellite trajectory will be

presented.

3.1 Mathematical Objects

Mathematical objects abstract in a generic manner the mathematical
techniques used to manipulate data derived from the physical system. Each
mathematical object shares a common set of properties which specify the
functionality of the object. The function property specifies the general
mathematical technique. The method property (not to be confused with an
object method) specifies the specific manner in which the function is
implemented. Object property values are set at object creation and may be
accessed by the appropriate inquiry method.

All mathematical objects require a two step creation/realization
process. The creation method produces an instance of the object according to
the parameters describing the mathematical technique. The realization method

associates the mathematical object with appropriate physical objects. In the
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following discussion of mathematical techniques implemented in this
research, the associated mathematical classes and a sampling of their methods
will be described. A complete list of all object methods as proposed by this

research is provided in Appendix C.

3.2 Least Squares Estimation

The least squares estimation process recovers physical model
parameters which best fit a set of true observations. The estimation process
begins with the design of a physical system model which approximates the
true physical system. The observations are recreated in the simulated world
and compared to the true observations. Observational and dynamic
parameters are adjusted to minimize the sum of the squares of the observation
residuals. Non-linear physical models require an iterative adjustment until a
specified convergence is satisfied. Observation residuals may also be
examined to identify systematic errors which may then be incorporated into
the physical model.

Typical physical processes require complex, non-linear models. The
estimation problem is simplified by converting the non-linear problem into a
linear problem. The linearization process begins by representing the true

physical system by a system of non-linear ordinary differential equations. True
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is partitioned into subvectors of dynamic variables and dynamic model

parameters.

.Z'«True - :}Due(ITrue’t)

'XTrue

aﬂ'ue

rE(I'rue(:KTrue,t) - _F(XTme’t;aTrue)}

0

The non-linear system may be converted into a linear system through

the introduction of a reference system of similar form.

§=3(%,1)
7= [ﬂ (32)
I(1,1) = [F(X(’)t; a)}

The dynamics of the true system are expanded in a Taylor series about
the reference system. If the two systems are sufficiently close in space and

time, the higher order terms of the expansion may be neglected.

r True & I,t True
O 3(7:,:)+-—;I—)(r -1) : (33)

The difference between the dynamic systems x = %™ —% may now

be expressed in terms of a linear system of ordinary differential equations.
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x(t) = A(X,1)x(¢)

aF(X,t, ha
A(Z,t)zﬁ(l,t)={ (f%t @) ﬂ’(%at )} (34)

This homogeneous ODE possesses a solution which may be

formulated in terms of the state transition matrix.

x(t) = O(t, 1, Ix(t,)

() &)
O(11,)=| () So G
0 I

The solution of the state transition matrix is derived through
substitution into Equation (34). The resulting ODE is usually evaluated by

numerical integration methods.

d(t,8,) = A, )D(t,1,)

D(ty,2,) =1 G0
The observation-state relationship in Equation (37) may be linearized
in a similar manner to produce the set of linear observation equations in
Equation (38). The value ¢; represents combined effect of all systematic and
random errors in the measurement.
Tru True { o Tru True True
¥ = G (1™ (1} B )+ & -

Y, = G((t, )} 8)+ ¢
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The expression for the observation residuals y; in Equation (38) is
expressed in terms of the state differences at epoch 7. Using Equation (35) the
observation equations may be formulated in terms of the state differences at

initial epoch #.

v, = HX(@ 3 BYO(E 0 e(t ) + €,
v = H(X(t X B)x(t, )+ &,

Finally, the least squares minimization of the observational residual

results in the well-known relationship for the state difference update.

i=(HTH) Hy

Equation (40) represents the normal equation formulation of the least
squares solution. The solution may also be formulated in terms of orthogonal
transformations which yield greater precision benefits. Two reasons motivate
the use of normal equations over orthogonal transformations. First, the
parallel implementation of the normal equation expression is simpler than that
of the orthogonal transform. Secondly, different sets of normal equations are
quickly combined via an 9(n®) addition operation as compared to an 8@’)

accumulation operation for orthogonal transformations.
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As described in Section 2.5.2, the geopotential information derived
from the satellite tracking measurement requires the estimate of the low
satellite intial conditions in addition to the geopotential coefficients. A
geopotential estimate including the contribution due to the initial state
adjustment at each subarc does not require an explicit state estimate.
Appendix J presents the methodology used to form the geopotential

covariance from satellite tracking information.

int32 Batch_create ( int32 batch_size,
Batch * estimator );
int32 Batch_free ( Batch * estimator );

The Batch object contains the information and algorithms necessary to
calculate the normal equation formulation of the least squares estimate. The
input argument batch_size specifies the number of observation equations to
cache before performing the accumulation operation. As described in
Section 1.3.4.2, the creation routine only initializes an instance of the Batch

object. The initialization is completed via a call to the realization routine.
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int32 Batch_initialize_parameters ( Batch estimator,
int32 n_parm_types,
I* vargs *)s

The Batch_initialize_parameters method informs the Batch object of the
parameters to be estimated. The input argument n_parm_types specifies the
number of different dynamic and observation parameter types. The list of
parameter types and subarc information (if necessary) completes the variable
argument list. The method must be invoked prior to the realization method.
Logically, the functionality is part of the object realization and should be
combined with the realization method, but language complexities associated

with the variable argument list contribute to the use of a separate method.

int32 Batch_realize ( Batch estimator,
int32 which_obs,
PhysObj observation,
float64 iigga )

The Batch_realize method extract information from the simulated
environment to complete the realization process. The input argument
which_obs specifies the type of physical object. The physical object must have
its observable property set to TRUE. The input argument sigma specifies the a

priori variance of the observation.
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int32 Batch_jincrement_subarc ( Batch estimator );

int32 Batch_accumulate ( Batch estimator,
PhysObj observation );

int32 Batch_solve ( Batch estimator );

The above Batch methods provide the functionality of the Batch object.
The Batch_increment_subarc methods informs the Batch object to begin
processing the next subarc. The Batch_accumulate method extracts the current
observation residual and partial derivative information from the physical
object observation. The normal equations will not be immediately updated, but
rather batch_size number of partials will be cached inside the object to permit
the use of a matrix-matrix multiplication. The Batch_solve method performs
the linear system solve of the normal equations and caches the information
within the object. Data contained within the Batch object is retrieved via calls

to the inquiry methods listed in Appendix C.

3.3 Numerical Integration

The propagation of a satellite trajectory requires the numerical
integration of the satellite’s equations of motion. Many different methods of
numerical integration exist with each method possessing certain
computational cost and numerical accuracy attributes. Of the different

methods, multistep integration routines have been shown to be ideally suited
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to the smooth trajectories associated with satellite motion [Lundberg, 1981].
The multistep methods require knowledge of the integration state values at
multiple epochs in order to advance the solution. Lundberg [1981] describes
many different implementations of the multistep method as applied to the
satellite propagation problem.

The Center for Space Research numerical integration software library
MSILIB [Lundberg, 1991] provides the numerical integration functionality for
this research. The library implements four different multistep methods. Of
the methods, the Adams-Bashforth-Moulton algorithm integrates the satellite
equations of motion and the state transition matrix. The Adams-Bashforth-
Moulton algorithm is a Class I formulation which integrates first order
differential equations. The MSILIB Class II formulations operate directly on
second order differential equations providing greater accuracy for long
integration intervals. The familiarity with first order systems of equations
influenced the choice of a Class I formulation. The MSILIB library was
written in FORTRAN. A numerical integration object written in C calls the

library to perform the numerical integration.
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int32 MsilibABFS_create ( int32 state_transition,
int32 nord,
int32 start_nloop,
float64 start_alim,
float64 mesh_size,
MisilibABFS * integrator );
int32 MsilibABFS_free ( MsilibABFS * template );

The MsilibABFS object contains the information and algorithms
necessary to propagate a satellite trajectory and calculate satellite state
transition information. The input argument state_transition specifies the
computation of state transition information. The input argument nord specifies
the order of the multistep integration. The input argument start_nloop specifies
the maximum number of iterations in the starting procedure, and the input
argument start_alim specifies the starting convergence. The input argument
mesh_size specifies the spacing in the multistep mesh. The creation routine
only initializes an instance of the MsilibABFS object. The initialization is

completed via a call to the realization routine.

int32 MsilibABFS_initialize parameters ( MisilibABFS integrator,
int32 n_parm_types,
—e /* vargs *

The MsilibABFS_jnitialize_parameters method informs the MsilibABFS
object of the parameters against which state transition information should be

calculated. The input argument n_parm_types specifies the number of different
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dynamic and observation parameter types. The list of parameter types
completes the variable argument list. The method must be invoked prior to
the realization method. Logically, the functionality is part of the object
realization and should be combined with the realization method, but language
complexities associated with the variable argument list contribute to the use of

a separate method.

int32 MsilibABFS_realize ( MsilibABFS integrator,
int32 nsats
/* vargs */);
int32 MsilibABFS_free ( MsilibABFS * integrator );

The MsilibABFS_realize method extract information from the simulated
environment to complete the realization process. The input argument nsat
specifies the number of physical objects to be propagated. The list of physical
objects complete the argument list. The physical objects must have their

dynamic properties set to TRUE.

int32 MsilibABFS_propagate ( MsilibABFS integrator,
float64 tout );
int32 MsilibABFS_restart ( MsilibABFS h&_gratdr );

The above MsilibABFS methods provide the functionality for the
MsilibABFS object. The MsilibABFS_propagate method integrates the trajectory

according to the forces associated with the satellite objects. The input
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argument tout specifies the final epoch of the integration with respect to the
initial epoch of the satellite state. The MsilibABFS_restart method performs an
integration restart operation and reinitializes the state transition matrix to
identity. Data contained within the MsilibABFS object is retrieved via calls to

the inquiry methods listed in Appendix C.
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4. Computational Environment

The main focus of this research is the examination of parallel
computational techniques to improve the performance of precision orbit
determination and geopotential recovery applications. The development of
paralle]l techniques requires the examination of the various layers of the
computer architecture. The first issue concerns performance issues on scalar
processors. The next layer directly address parallel computing and the
development of high performance accumulation and matrix factorization
algorithms. Finally, the parallel methods will be extended to out-of-core
processing techniques. The discussion in this chapter will conclude with an
examination of data-parallel implementation methods for numerical

integration algorithms.

4.1 Scalar Processor Performance Issues

A typical serial architecture consists of two main components. The
central processing unit (CPU) performs the work, and the main memory
(RAM) contains the data. The communication bandwidth between the CPU
and RAM on the current generation of microprocessors is insufficient to
sustain peak performance [Astfalk, 1990]. A significantly faster memory, or

cache, provides a temporary storage location for data. Algorithms structured
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to exploit cache memory experience significant performance improvements.
Cache reuse is accomplished in linear algebra operations by forming block
partitioned algorithms. The block algorithms treat the matrices in terms of
two-dimensional submatrices instead of collections of row and column
vectors. Block algorithms promote maximum cache reuse by minimizing data
traffic between the cache and main memory [Dongarra, 1990].

The management of communication between RAM, cache and the
CPU cannot generally be controlled from a high level language such as C or
FORTRAN. High performance algorithms are realized through the use of
highly optimized low level subroutines. @ The Basic Linear Algebra
Subprograms (BLAS) comprise the computational primitives for linear
algebra operations. Three different levels of the BLAS exist. The Level 1
BLAS are vector-vector operations which perform 3(n) operations on 8(n)
data elements. The Level 2 BLAS are matrix-vector operations which perform

8(n?) operations on 9(n?) data elements. The Level 3 BLAS are matrix-matrix
operations which perform 8(n*) operations on 8(n’) data elements. The

Level 3 BLAS operations manipulate data in a manner which exploits cache

memory.
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BLAS Level One

xCOPY ( n, x, incx, y, incy )
xSCAL ( n, alpha, x, incx )
xAXPY ( n, alpha, x, incx, y, incy )

BLAS Level Two

xGEMV ( trans, m, n, alpha, a, Ida, x, incx, beta, y, incy )
xSYMV  ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )
xTRMV  ( uplo, trans, diag, n, a, Ida, x, incx )
xTRSV  ( uplo, trans, diag, n, a, Ids, x, incx )
xGER ( m, n, alpha, x, incx, y, incy, a, Ilda )
xSYR ( uplo, n, alpha, x, incx, a, Ida )
xSYR2 ( uplo, n, alpha, x, incx, y, incy, a, Ida )

BLAS Level Three

xGEMM ( transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, ¢,
Ide )

xSYMM (side, uplo, m, n alpha, a, 1da, b, Idb, beta, ¢, Idc )

xSYRK ( uplo, trans, n, k, alpha, a, Ida, beta, ¢, Idc )

xSYR2K ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, Idc )

xTRMM (side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db )

xTRSM (side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db )

Figure 4 Basic Linear Algebra Subprograms for Real Valued Operations

4.1.1 Batch Filter Implementation

The following discussion illustrates the implementation of the BLAS
within the precision orbit determination batch algorithm. A single iteration of
the batch algorithm in a manner similar to Tapley is presented in Figure 5. A
number of opportunities exists to exploit the BLAS primitives. The mapping
of the partial vector, the accumulation of the partial information and the linear
system solve all require dense linear algebra operations. In addition, implicit
operations such as those found in the right hand side of the dynamic model

may also incorporate dense linear algebra operations. As the number of
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estimated parameters increases, the cost of accumulation and linear system

solve dominate the total cost of the batch algorithm.

Initialize at ¢,
While (observations remain and ¢, < ;)
Read observation at #
If all observations have been processed, then break
Integrate reference trajectory to

Form H, = Ififb(ti,to)

Accumulate > HTRT'H,,> H] Ry,
i i

Increment ¢; = ¢+1

End while
Solve normal equations

Figure S Tapley’s Batch Least Squares Algorithm

4.1.1.1 Mapping of the Partial Vector
The mapping of the partial vector to the initial epoch requires the

transformation of the partial vector at the current epoch. This operation
consists of a matrix-vector multiply (xGEMV). The BLAS routine is written in
terms of the operation y < aAx+ fly where the vectors are considered
column-oriented. Hence, the necessity of the transpose operation as presented
in Figure 6.
4.1.1.2 Accumulation of the Normal Matrix

The accumulation of the normal equations requires the addition of
information to the normal matrix and normal equation right-hand-side. The

normal matrix is updated via a rank-1 update (xGER) of the partial vector. The

78



rank-1 update is a Level 2 BLAS operation. Since the normal matrix is
symmetric, the symmetric variant of the rank-1 update (xSYR) which updates
only the lower or upper portion of the matrix may be used. The normal
equation right-hand-side is updated through the summation of a scaled vector

(i.e,, y « ax+y). The axpy operation (xAXPY) is a Level 1 BLAS operation.

As mentioned previously, high performance on scalar processors requires the
implementation of Level 3 BLAS operations. Therefore, the best performance
would not be expected from the algorithm as stated.

The algorithm may be converted to Level 3 BLAS operations by
forming batches of observations. The symmetric rank-1 operation becomes a
Level 3 symmetric rank-k (xSYRK) operation. The axpy operation becomes a
Level 2 matrix-vector multiply (xGEMV). The incorporation of these
modifications into the batch accumulation algorithm requires only the addition
of an if statement as shown in Figure 6.
4.1.1.3 Linear System Solve

The accumulation of the observation equations creates a large, dense
linear system which must be solved to recover the state update. Assuming
sufficient observability of the estimated parameters, the system may always be
assumed positive definite [Golub, 1980]. The preferred method of solution

requires the Cholesky factorization of the normal matrix and two triangular
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system solves. The development of the Cholesky factorization is presented in
Appendix F. The solution of the linear system may be easily accomplished
once the matrix factorization is complete. The original system is grouped in a
manner which leads to a sequence of Level 2 BLAS triangular system solves

(xTRSV) as seen in Equation (41).

The linear system solve algorithm may be extended to the inversion of
the normal matrix for the purposes of obtaining the variance-covariance
information. The goal of the inversion is the recovery of a matrix that when
multiplied by the normal matrix yields the identity matrix. The search for this
matrix leads to the construction of a linear system which consists of the
identity matrix on the right-hand-side. The determination of the covariance
matrix follows a sequence of Level 3 BLAS triangular system solves with

multiple right-hand-sides (xTRSM) as seen in Equation (42).

L(L'P)=1
LZ=1
L'p=2

Figure 6 presents the batch algorithm including the Level 3 BLAS.
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Initialize at ¢,

Do while (observations remain and 7; < )
Read observation at ¢;
Integrate reference trajectory to

!

! Accumulate a batch at a time
]

if (batch is full) then
1SYRK ( “L”, “N”, n, m, 1.0e+0, H, 1d_h, 1.0, HtH, 1d_hth )
xGEMYV ( “N”, m, n, 1.0, H, 1d_h, y, 1, 1.0, Hty, 1)

end if

1

! map partials to initial epoch
1

xGEMY ( “N”, n, n, 1.0, PHI, 1d_phi, Htilde, 1, 0.0, H(i,1), 1d_h)
Increment t; = £,

End while

'
! Accumulate incomplete batches

!

xSYRK ( “L”, “N”, n, i, 1.0e+0, H, 1d_h, 1.0, HtH, 1d_hth )
xGEMYV (“N”,i,n,1.0,H,1d_h,y, 1, 1.0, Hty,1)

!

! Solve normal equations

!

xCHOLESKY ( n, HtH, 1d_hth )

sTRSV (“L”, “N”, “N”, n, HtH, 1d_hth, Hty, 1)
xTRSV (“L”, “T”, “N”, n, HtH, 1d_hth, Hty, 1)

!
! Invert normal matrix

!

set_identity (n, P,1d_p)

xTRSM ( “L”, “N”, “N”, “N”, n, n, 1.0, HtH, 1d_hth, P,1d_p )
xTRSM ( “L”, “N”, “T”, “N”, n, n, 1.0, HtH, 1d_hth, P,1d_p )

Figure 6 Level 3 BLAS Modifications to Tapley’s Batch Algorithm
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4.2 Parallel Performance Issues

Parallel processing is the distribution of computational work among a
collection of processors for the purpose of increased computational
performance. Many types of parallel processors exist. Many users are
familiar with the shared memory vector supercomputers such as the Cray Y-
MP and Cray T90. These architectures consist of a relatively small number of
very powerful processors which share a common memory unit. A second type
of parallel architecture consists of a larger number of independent processor-
memory subsystems connected by a high-speed network. Examples of
distributed memory machines include the Cray T3E and the Intel Paragon.

The shared memory architectures offer a simple model for parallel
algorithm design as data can be exchanged between processors quite easily
through the common memory. Unfortunately, shared memory architectures
also share a common communications bus. The capacity of the bus imposes a
practical limit to the number of processors which exist on the system. As a
result, improved aggregate performance on shared memory architectures
depend primarily on performance gains on the individual processors
[Astfalk, 1990].

Distributed memory architectures avoid memory access problems by

physically distributing memory units to each of the processing elements. The
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size of the network can increase without affecting individual processor
performance and, theoretically, may consist of an arbitrarily large number of
processors. The aggregate performance improves by simply adding more
processors.

Communication between processors performed via common memory
on shared memory architectures must now be performed over a network on the
distributed memory architectures. The cost of communication between
processors is significantly larger than the cost of moving data between main
memory and the CPU. In addition, network conflicts also degrade
performance. An effective algorithm design is required to organize and
minimize inter-processor communication in the distributed memory
environment.

From the point of view of the individual processor, the memory on
remote processors may be treated as an additional level in its local memory
hierarchy. The use of block algorithms would appear to be the natural method
of minimizing data traffic and achieving high performance on distributed
memory architectures. Block algorithms yield the desired result. However,
the complexity of the parallel implementations increases greatly when moving
from a serial to parallel block algorithm. The application programmer is

responsible for the distribution and communication of data in the parallel
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implementation. The management of the communication requires a complete
understanding of the data movement and an effective programming paradigm.
Message passing is one of the more common programming paradigms
on distributed memory architectures. Under message passing, communication
between processors occurs in the form of messages. The source processor
executes a send operation to initiate the communication, and the destination
processor executes a receive operation to complete the transmission of data.
The send and receive operations are not required to be synchronous, or
blocking. Asynchronous, or non-blocking, message passing potentially hides
the communication cost by overlapping the communication operation with
useful computations. For example, a non-blocking receive may be posted
prior to the corresponding send operation. The destination processor
continues performing useful work until the communication completes.
Collective communication provides a higher level set of instructions to
direct the movement of data. Parallel linear algebra algorithms in particular

benefit from the use of collective communication operations.
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Collective Operation MPI Routine Description
Barrier MPL_Barrier Blocks execution until all processors in the
group have reached the barrier point
Broadcast MPI_Bcast Information residing on a single processor is
copied to all processors
Gather MPI_Gather Information distributed across all processors
MPI_Gatherv is copied to a single processor
Scatter MPI_Scatter Information residing on a single processor is
MPI_Scatterv distributed across all processors
Collect MPI_Allgather Information distributed across all processors
MPI_Allgatherv is copied to all processors
Reduce-to-One MPI_Reduce Element-wise reduce operation performed on

information residing on all processors
leaving the result on a single processor

Reduce-to-All

MPL_Allreduce

Element-wise reduce operation performed on
information residing on all processors
leaving the result on all processors

Distributed Reduce

MPI_Reduce_scatter

Element-wise reduce operation performed on
information residing on all processors
leaving the result distributed across all
processors

Table 4 Collective Communication Operations

4.2.1 Parallel Linear Algebra

Dense linear algebra operations require an order of magnitude greater

number of computations to number of data elements communicated. The

situation presents a significant opportunity to exploit parallel resources. Two

competing paradigms currently dominate implementations of parallel dense

linear algebra. Block cyclic distributions provide the basis for implementation

such as High Performance FORTRAN and ScaLAPACK. Physically Based

Matrix Distribution (PBMD) forms the paradigm for the PLAPACK package.

85




Block cyclic distributions start with the assignment of the 9(n’) data

elements associated with the linear operator across a processor array. For
scalability reasons, the processor array is organized in a two-dimensional grid
layout [Dongarra, 1994]. The simplest method is a blocked distribution where
the matrix is partitioned into » row blocks and ¢ column blocks. The block
(i) is assigned to processor (iyj). This distribution suffers from load
balancing problems for triangular and banded matrices as some processors
may not receive any data. A finer blocking of the matrix in row and column
directions and a wrapping of the blocks around the processor grid provides an
effective means of load balancing.

The block cyclic distribution possesses inherent difficulties interfacing
with application software. The distribution of the domain and range spaces
are imposed by the distribution of the linear operator. If the generation of the
domain elements and/or the recovery of the range elements proceed more
effectively with different distribution, a significant incompatibility is created
between the application and the parallel linear algebra routine. Bridging this
incompatibility may require a significant coding effort and significant
degradation in performance due to data redistribution.

Block cyclic distributions are inherently complex to implement

because of a lack of natural communication structures. Communication
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operations involve the movement of matrix blocks between the rows and
columns of processors. The developer must manage the message passing and
maintain book-keeping of block indices and offsets. One parallel linear
algebra library, ScaLAPACK, attempts to encapsulate communication details
within the Basic Linear Algebra Communication Subprograms (BLACS). The
block mapping and buffer space management remains exposed yielding a very
complex and intricate piece of software.

Physically Based Matrix Distribution (PBMD) presents an alternative
parallel linear algebra distribution paradigm which avoids many of the
problems of block cyclic. PBMD begins by addressing the issue of
compatibility between the application software and the linear algebra library.
Under PBMD, the user distributes elements of the one-dimensional domain
and range space over the two-dimensional array of processors to suit the
application. The resulting vector distributions induce the distribution of the
linear operator in a manner to yield a highly effective parallel linear algebra
implementation.

The parallel implementation of the matrix-vector multiplication
illustrates the principles of PBMD (See Figure 7). Each element of the
domain space x multiplies a column of the operator 4. Similarly, each

element of the range space y is the result of a summation across the rows of
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operator A. Therefore, a relationship exists between the columns of 4 and the
element of x and the rows of 4 and the elements of y. Given a distribution of x
and y on the processor array, A4 should be distributed in a manner which
naturally brings together the columns of 4 with the appropriate elements of x
and the rows of 4 with the appropriate elements of y. This distribution is
identified by projecting the indices of the domain vector x in the column
direction and the indices of the range vector y in the row directions. The
projected indices specify the location of the matrix row or column block. The
matrix-vector multiplication can be stated quite elegantly in terms of

collective communication operations.
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The matrix-vector multiplication y <~ 4Ax may be written as the summation,
y=Ayxy + Ax, +-+A4,x, 43)

where 4; is the i** column of 4. This form exposes the relationship between
the columns of 4 and the elements of x. Likewise, the operation may be
written as,

Yo Agoxo + Ay x4+ 4y, x;

Y A oxo + Ay x++ 4,
= . (44)

Y, Aj.ox0 + Aj_,xl +"'+Aj.ixl

This form exposes the relationship between the rows of 4 and the elements of
y. Suppose that x and y have been divided into an equal number of partitions
and those partitions have been distributed identically across a 3x4 array of
processors (i.e., partition x; is located on the same processor as y;). The matrix
distribution is the defined by the projection of the block indices in the row and
column direction.

~
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The algorithm for the parallel matrix-vector multiplication may be stated as,

Collect x in columns to X
Perform the local matrix-vector multiply y < 4, ,x

Distributed reduce y in rows to y

Figure 7 Matrix-Vector Multiplication Under PBMD
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A significant characteristic of PBMD is the natural communication
structure implicitly defined by the distributed vector. The communication
structure consists of data mappings related by collective communication
operations. The vector itself comprises one mapping. The projection of the
vector onto a single row or column of processors comprises another mapping
named a projected vector, or pvector. A duplicated projected vector, or
dpvector, mapping is constructed by the simultaneous existence of pvectors on
every row or column of processors. The relations between these fundamental

objects are shown in Figure 8.

Duplicated
Collect » Projected
Vector
Distributed
Reduce
Broadcast Reduce-
to-One
A Y
Gather
Vector » Projected
Vector
Scatter

Figure 8 Communication Structure Between Vector Derived Objects

Classes of two-dimensional data objects may be developed if the
vector object is permitted to possess a width greater than one. The multivector
may be viewed as a collection of vector objects of equal length and distributed

identically. The projection of the multivector yields a projected multivector.
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Duplicated projected multivectors consists of projected multivectors
simultaneously existing on all rows or columns of processors. Finally, the
matrix distribution is determined by the projection of vector objects in the

processor row and column directions as previously described.

Duplicated
Collect Projected Collect
Multivector
Distributed Distributed
Reduce Reduce
Broadcast Reduce-
to-One
Gather s Projected Gather
Multivector Multjiv ector | Matrix
Scatter Scatter

Figure 9 Communication Structure Between Multivector Derived Objects

4.2.2 PLAPACK Implementation

The PLAPACK parallel linear algebra library primarily consists of an
object oriented infrastructure to describe and manage parallel linear algebra
object distributions. PBMD describes the distribution of data. The
Release 1.0 implementation possesses only a single inducing vector. The
inducing vector consists of constant size vector partitions distributed across
the array of processors in column-major order. Linear algebra objects
encapsulate the details of the distribution. The object-oriented nature of the

packages allows the development of hi"gh level routines which hide virtually
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all the parallel implementation details. However, through the manipulation of
different data objects and in-lining functionality, the experienced programmer
may optimize performance to a considerable degree. The remainder of the
section provides a summary of the PLAPACK package. van de Geijn [1997]
describes the PLAPACK package in its entirety.

The typical PLAPACK user interacts with linear algebra objects
through the manipulation of object views. An object view corresponds
directly to the blocking specified in linear algebra block algorithms. As a
result, the PLAPACK code exhibits a one-to-one correspondence to the
natural expression of block algorithms as described in classroom setting.
PLAPACK facilitates code development even further by incorporating view
manipulation routines which discourage the use of explicit indexing. Users
specify views according to partitions of larger linear algebra objects. The
PLAPACK algorithms step through the entire object by sliding a view across
the object or by recursively splitting a global view into even smaller partitions.

The different object types available in PLAPACK correspond to those
described in the previous section. A single communication routine, PLA_Copy,
performs all inter-processor data movement for PLAPACK. PLA_Copy

identifies the correct collective operation based on the object types and
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performs the optimum communication without any additional information

required from the programmer.

4.2.3 Cholesky Factorization

The parallel Cholesky factorization implements the left-looking variant

of the algorithm as presented in Appendix F. The following description of the

parallel algorithm refers to Figure 10.

Lines 12-21

Line 22

Lines 25-30

Lines 31-39

Lines 40-55

Line 56

Line 57

Creates the multiscalar scale parameters required by the
BLAS function calls.

Initialize the matrix views to a_done and a_next. At any
point in the algorithm a_done consists of the matrix block
Ao and A,,. a_next consists of the matrix blocks 4, ,,
A]J, Az.l and A1’2.

Determine the size of matrix block 4,; which can
completely exist on a single processor. If size is equal to
zero, the factorization is complete. Otherwise, create
views into the appropriate matrix blocks.

Perform the update of the current column panel based on
the previous multiplication. The row panel 4,o which
exists on a single row of processors must be copied to the
other processor rows. The creation of a duplicated row
projected multivector facilitates the copy. Likewise, the
duplicated column projected multivector provide
temporary storage of the multiplication result before
reduction into the current column panel.

Optimize the matrix multiplication. On the Cray T3E, the
no transpose, transpose GEMM operation is not well
optimized. An explicit transpose operation enables the
use of the well optimized no transpose, no -transpose
GEMM operation.

Reduce the results of the matrix-matrix multiplication into
the current column panel.

Perform the single processor Cholesky factorization on
the matrix block 4 ;.

93



Lines 58-62 Update the remainder of the column panel. The
duplicated multiscalar provides work space for the
broadcast of 4, ;.

Lines 63-64 Adjust the views for the recursive application of the
algorithm.
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11
12

13
14

15

16
17

18

19
20

21
2
23
24

25
26

#include "PLA.h"
int PLA_Chol | ( int int_uplo, PLA_Obj a)
{
int size, size_top, owner_top, size_left, owner_left, length;
PLA_Template template = NULL;
PLA Obj adone=NULL, anext =NULL,
al0 = NULL, all = NULL, al2 = NULL,
al0_dup = NULL, all_dup = NULL,
a20 = NULL, a21 = NULL, a21_dup = NULL,
a_col = NULL, a_col_dup = NULL,
min_one = NULL, zero = NULL, one = NULL;
PLA_Obj_template ( a, & template );

PLA_Mscalar_create ( MPI_DOUBLE, PLA_ALL ROWS,
PLA_ALL_COLS, 1, 1, template, & one );

PLA_Obj_set_to_one ( one );

PLA_Mscalar_create ( MPI_DOUBLE, PLA_ALL_ROWS,
PLA_ALL_COLS, 1, 1, template, & zero );

PLA_Obj_set_to_zero ( zero );

PLA_Mscalar_create ( MPI_DOUBLE, PLA_ALL_ROWS,
PLA_ALL _COLS, 1, 1, template, & min_one );

PLA_Obj_set_to_minus_one ( min_one );
PLA_ODbj_vert_split_2 ( a, 0, & adone, & anext);
while (TRUE )

{

PLA_Obj_split_size ( anext, PLA_ SIDE_TOP, & size_top,
& owner_top );
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28

29

30

31

32

33
34

35

36

37
38

39

40
41

42

43

45
46
47
48
49
50
51

52
53

/*

PLA_Obj_split_size ( anext, PLA_SIDE_LEFT, & size_left,
& owner_left );

if ( ( size = min ( size_top, size_left ) ) == 0 ) break;
PLA_ODbj_vert_split_2 ( anext, size, & a_col, & anext );
PLA_Obj_horz_split_2 ( a_col, size, & all, & a2l);
PLA_Obj_horz_split_2 ( adone, size, & al0, & a20 );

PLA_Pmvector_create_conf_to ( adone, PLA_PROJ_ONTO_ROW,
PLA_ALL_ROWS, size, & al0_dup );

PLA_Obj_set_orientation (210, PLA_PROJ_ONTO_ROW );
PLA_Copy ( al0, a10_dup );

PLA_Pmvector_create_conf to ( adone, PLA_PROJ_ONTO_COL,
PLA_ALL_COLS, size, & a_col_dup);

PLA_ODbj_set_to_zero ( a_col_dup );

PLA_Local_gemm ( PLA_NO_TRANS, PLA_TRANS, min_one, adone,
a10_dup, zero, a_col_dup ); */

int loc_len, loc_wid;

PLA_Obj temp_mscalar = NULL;

double * buffer;

PLA_Obj_local_length ( a10_dup, & loc_len );

PLA_Obj local_width ( a10_dup, & loc_wid );

PLA_Mscalar_create ( MPI_DOUBLE, PLA_ALL_ROWS,
;LA__ALL_COLS, loc_wid, loc_len, template, & temp_mscalar

PLA_Obj_local_buffer ( temp_mscalar, ( void ** ) & buffer );

PLA_Obj_extract_transpose_contents ( a10_dup, loc_wid, 1,
& loc_wid, & loc_len, buffer );
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55
56

57
58
59
60

61
62

63

64
65

66
67
68
69
70
71
72
73
74
75
76
77

78

if (loc_wid > 0)

PLA_Local_gemm ( PLA_NO_TRANS, PLA_NO_TRANS,
min_one, adone, temp_mscalar, zero, a_col_dup );

PLA_Obj_free ( & temp_mscalar );
}
PLA_Reduce_x (PLA_SHAPE _LOW_TRAP, a_col_dup, one, a_col );
PLA_Local chol (all);

PLA_Mscalar_create_conf _to (all, PLA_ALL_ROWS,
PLA_INHERIT, & all_dup );

PLA_Copy (all, all_dup);

PLA_Local_trsm ( PLA_SIDE_RIGHT, PLA_LOW_TRIAN,
PLA_TRANS, PLA NONUNIT_DIAG, one, all_dup, a21);

PLA_Obj_view_shift ( anext, size, 0, 0, 0);
PLA_Obj_view_shift ( adone, size, 0, size, 0 );

}

PLA_Obj_free ( & adone);

PLA_Obj_free ( & anext);

PLA_Obj_free (& al0);

PLA_Obj_free ( & al0_dup );

PLA_Obj_free (& all);

PLA_Obj_free ( & all_dup );

PLA_Obj_free (& al2);

PLA_Obj_free (& a20);

PLA_Obj_free (& a21);

PLA_Obj_free ( & a21_dup);
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80
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82

83

84

85

PLA_Obj_free ( & min_one);
PLA_Obj_free ( & zero);
PLA_Obj_free ( & one);
PLA_Obj_free (& a_col );
PLA_Obj_free (& a_col_dup );

return ( PLA_SUCCESS );

Figure 10 PLAPACK Cholesky - Parallel Implementation
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4.2.4 Triangular Solve Multiple RHS

The parallel

triangular solve with multiple right-hand-sides

implements the algorithm presented in Appendix G. The following

description of the LLNN variant refers to Figure 11. The LLTN variant

possess a similar implementation.

Lines 10-15

Lines 16-17
Line 18
Lines 21-25

Lines 26-30

Lines 31-32
Lines 33-35

Lines 36-37
Line 38

Creates the multiscalar scale parameters required by the
BLAS function calls.

Initializes the views into the matrix objects.
Performs scaling of matrix B prior to TRSM algorithm.

Determine the size of matrix block Aoy which can
completely exist on a single processor. If size is equal to
zero, the operation is complete. Otherwise, create views
into the appropriate matrix blocks.

Copy the current column of 4 into a duplicated column
projected multivector. The update of the row panel B,
requires copying data corresponding to matrix block Ao,
and the update of B, requires copying data corresponding
to matrix block 4, o.

Update the row panel B,.

Copy the current row of B into a duplicated row oriented
projected multivector to set up the matrix multiplication.

Update the matrix B,.

Adjust the views for the recursive application of the
algorithm.
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int PLA_Trsm_lin (int unit, PLA_Obj alpha, PLA_Obj a, PLA_Obj b)

{

int size, size_top, owner_top, size_left, owner_left;
PLA_Template template = NULL;
PLA_Obj a_cur=NULL,a_col=NULL, a_col_dup = NULL,

a00_dup = NULL, a10_dup = NULL,

b_cur = NULL, b_row = NULL, b_row_dup = NULL,

minus_one = NULL, one = NULL;
PLA_Obj_template ( a, & template );

PLA_Mscalar_create (MPI_DOUBLE, PLA_ALL_ROWS,
PLA_ALL_COLS, 1, 1, template, & one );

PLA_Obj_set_to_one ( one );

PLA_Mscalar_create ( MPI_DOUBLE, PLA_ALL_ROWS,
PLA_ALL COLS, 1, 1, template, &minus_one );

PLA_Obj_set_to_minus_one ( minus_one );
PLA_Obj_view_all (a, & a_cur);
PLA_Obj_view_all (b, & b_cur);
PLA_Scal ( alpha, b_cur );

while (TRUE )

{

PLA_Obj_split_size ( a_cur, PLA_SIDE_TOP, & size_top,
& owner_top );

PLA_Obj_split_size (a_cur, PLA_SIDE_LEFT, & size_left,
& owner_left );

if ( ( size = min ( top_size, left_size ) ) == 0 ) break;
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PLA_Obj_vert_split_2 ( a_cur, size, & a_col, & a_cur );
PLA_Obj_horz_split_2 ( b_cur, size, & b_row, & b_cur %
PLA_Obj_set_orientation ( a_col, PLA_PROJ_ONTO_COL );

PLA_Pmvector_create_conf_to ( a_cur, PLA_PROJ_ONTO_COL,
PLA_ALL_COLS, size, & a_col_dup );

PLA_Copy ( a_col, a_col_dup );
PLA_Obj_horz_split_2 (a_col_dup, size, & a00_dup, & a10_dup );

PLA_Local_trsm (PLA_SIDE_LEFT, PLA_LOW_TRIAN,
PLA_NO_TRANS, unit, one, a00_dup, b_row )

PLA_Pmvector_create_conf_to ( b_cur, PLA_PROJ_ONTO_ROW,
PLA_ALL_ROWS, size, & b_row_dup );

PLA_Copy (b_row, b_row_dup );

PLA_Local_gemm ( PLA_NO_TRANS, PLA_NO_TRANS, minus_one,
al0_dup, b_row_dup, one, b_cur );

PLA_Obj_view_shift ( a_cur, size, 0,0, 0);
}
PLA_Obj_free (& a_cur);
PLA_Obj_free (& a_col);
PLA_ODbj_free ( & a_col_dup);
PLA_Obj_free ( & a00_dup );
PLA_Obj_free ( & al0_dup );
PLA_Obj_free (& b_cur);
PLA_Obj_free (& b_row);
PLA_Obj_free (& b_row_dup );

PLA_Obj_free ( & minus_one );
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52

PLA_ODbj_free ( & one);

}

Figure 11 PLAPACK TRSM - LLNN Variant Parallel Implementation
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4.3 Virtual Object Algorithms

The problems addressed in this research expand to a size which
exceeds the memory capabilities of the architecture. This situation is not
uncommon for parallel applications as the increase in performance permit
solutions of large systems before run time becomes prohibitively large.
Implementation of out-of-core (OOC) methods allow the examination of even
larger problems by viewing the disk as an additional layer in the memory
hierarchy. The problems associated with disk I/O traffic are analogous to the
local processor memory traffic and inter-processor communication problems
discussed previously. Not surprisingly, block algorithm techniques are the
best approach to minimizing the communication between the processors and
disk.

O specific issues which adversely effect performance must be
considered in the implementation of OOC methods. The primary factor
effecting I/O performance is the cost of accessing data located on disk. The
cost of accessing the disk is very expensive as compared to other
computational functions. = Many networks and parallel machines are
configured to share a single disk between processors. The operating system’s

ability to effectively manage the shared resource decreases with the number of
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simultaneous requests. The difficulties are abated by minimizing the number
of /O requests in terms of both number of accesses by a single processor and
the number of processors sharing the resource. Additional benefits are
realized through the implementation of asynchronous I/O requests. On
architectures which support non-blocking disk I/O, computations and
interprocessor communications may proceed concurrently with the file system
operations.

The data distribution abstractions in PLAPACK permit sharing of
resources in a quite natural way. On an architecture which shares file
resources, a single row or column of processors may be assigned to perform
the /O for the entire group. The data is read into/written from a projected
multivector existing on the row or column of processors. The data may then
be communicated to the rest of the processor through standard PLAPACK
communication routines. Constraining IO to occur on a single row or column
of processors reduces the amount of data which may be brought into memory
at any one time. However, larger objects may be filled by stepping though
panels of the matrix.

The structure of OOC algorithms are bounded by two limiting cases.
The first maximizes the overlap of computation and communication in an

effort to hide the cost of file I/O. A complex algdrithm is required to manage
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the asynchronous file traffic between many different data buffers. Also, the
allocation of memory to I/O operations limits the available memory for linear
algebra operations thereby reducing performance. The second limiting case
maximizes the amount of memory available for linear algebra operations in an
effort to maximize the performance of the algorithm. No memory is available
for overlapping with I/O leaving the disk access cost completely exposed.

As part of this research, PLAPACK was modified to support OOC
operations. Block methods were used to develop the OOC algorithms
necessary to invert a symmetric matrix. The routines include a OOC Cholesky

factorization and two variants of the OOC TRSM.

4.3.1 PLAPACK Implementation

The extension of out-of-core functionality to PLAPACK requires the
development of PLAPACK virtual objects. The virtual object manages views
into objects whose data exists entirely within virtual data space, or more
simply, on disk. Global data spaces, or parallel RAM, attach to virtual objects
for the caching of data for parallel operations. The user manages the data
movement between the virtual space and the global space through a set of

virtual object I/O routines.
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The PLAPACK object fully encapsulates the complexities of the out-
of-core implementation. =~PLAPACK nparallel functionality and virtual
functionality exist within the same object structure. As a result, the
assumptions which govern the development of PLAPACK parallel algorithms
apply to the development of PLAPACK virtual object algorithms. For more
information on the virtual object implementation and the usage of the new
object methods, Appendix E describes the PLAPACK Virtual Object

infrastructure.

4.3.1 Cholesky Factorization

The virtual object Cholesky factorization implements the left-looking
variant of the algorithm as presented in Appendix F. The following

description of the parallel algorithm refers to Figure 12.

Lines 13-19 Creates the multiscalar scale parameters required by the
BLAS function calls.
Line 20 Initialize the matrix views to a_matrix and ¢_matrix. At

any point in the algorithm a_matrix consists of the matrix
block 4,0 and A4, c¢_matrix consists of the matrix
blocks A4, A2 A;, and 4,,. At this point in the
algorithm, the matrix resides entirely on disk.

Lines 23-31 Determine the size of matrix block Cg,, which can exist
complete in parallel memory. If size is equal to zero, the
factorization is complete. Otherwise, create views into the
appropriate matrix blocks.

Lines 29-32 Attach shadow space to the current diagonal block of
matrix C and read the data into parallel memory.

Lines 33-44 Proceeding from left to right, read into memory the blocks
of a_panel and update the current diagonal block of C.
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Line 57

Lines 49-82

Lines 51-55

Lines 56-57

Lines 58-71

Lines 74-76

Lines 77-79

Lines 83

Perform the Cholesky factorization on the matrix block
Cuiog and write the results to disk.

Proceeding from top to bottom, update the subdiagonal
blocks in the current column.

Determine the size of matrix block C,,; which can exist
complete in parallel memory. If size is equal to zero, the
update of the current column is complete. Otherwise,
create views into the appropriate matrix blocks.

Attach shadow space to the current subdiagonal block of
matrix C and read the data into parallel memory.

Proceeding from left to right, read into memory the blocks
of a_panel and a_matrix_next to update the current
subdiagonal block of C.

Attach shadow space to the current diagonal block of
matrix C and read the data into parallel memory.
Alternatively, the diagonal block data could have
remained memory resident. A trade-off exists between
/O costs and memory usage.

Update the current subdiagonal column block and write
the result to disk.

Adjust the views for the recursive application of the
algorithm.
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#include "PLA.h"

int PLA_vCHOL_] ( int uplo, PLA_Obj a)

{
int size, diag_size, top_size, left_size;
PLA_Template template = NULL;
PLA_Obj one=NULL, minus_one = NULL,

a_panel = NULL, a_panel_cur = NULL, a_panel_next =
NULL,

a_matrix = NULL, a_matrix_next = NULL,

a_cur = NULL, a_next = NULL,

¢_diag = NULL, c_diag _cur = NULL,

c_cur = NULL, c_panel = NULL, ¢_matrix = NULL;
PLA_Obj_template ( a, & template );

PLA_Mscalar_create ( MPI_DOUBLE, PLA_ALL_ROWS,
PLA_ALL_COLS, 1, 1, template, & one );

PLA_Obj_set_to_one ( one);

PLA_Mscalar_create ( MPI_DOUBLE, PLA_ALL_ROWS,
PLA_ALL_COLS, 1, 1, template, & minus_one );

PLA_Obj_set_to_minus_one ( minus_one );

PLA_Obj_vert_split_2 ( a, 0, & a_done, & ¢_matrix );

while ( TRUE )

{
PLA_vObj_split_size ( ¢_matrix, PLA_SIDE_LEFT, & left_size );
PLA_vObj_split_size ( ¢_matrix, PLA_SIDE_TOP, & top_size );

if (( dia;_size = size = min ( left_size, top_size ) ) == 0 ) break;
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PLA_Obj_horz_split_2 ( a_matrix, size, & a_panel, & a_matrix );

PLA_Obj_split_4 ( c_matrix, size, size, & ¢_diag, PLA_DUMMY,
& c_panel, & ¢_matrix );

PLA_Obj_view_all ( c_diag, & c_diag_cur );

PLA_Obj_attach_shadow_conf_to_view ( ¢c_diag cur);

PLA_Read ( c_diag cur);

PLA_Obj_view_all (a_panel, & a_panel_next );

while ( TRUE )

{
PLA_vObj_split_size ( a_panel_next, PLA_SIDE_LEFT, & size );
if ( size == 0 ) break;

PLA_Obj_vert_split_2 ( a_panel_next, size, & a_panel _cur,
& a_panel next );

PLA_Obj_attach_shadow_conf_to_view ( a_panel_cur );
PLA_Read ( a_panel_cur );

PLA_Syrk (PLA_LOW_TRIAN, PLA_NO_TRANS, minus_one,
a_panel_cur, one, c_diag cur);

}

PLA_Obj_free ( & a_panel_cur);

PLA_Chol (PLA_LOW_TRIAN, c_diag cur);
PLA_Write ( c_diag_cur);

PLA_Obj_free ( & c_diag cur 5;
PLA_Obj_view_all ( a_matrix, & a_matrix_next );
while (TRUE )

{
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PLA_vObj_split_size ( c_panel, PLA_SIDE_TOP, & size );
if ( size == 0 ) break;
PLA_Obj_view_all ( a_panel, & a_panel_next );

PLA_Obj_horz_split 2 ( a_matrix_next, size, & a_next,
& a_matrix_next );

PLA_Obj_horz_split_2 ( c_panel, size, & ¢_cur, & c_panel );
PLA_Obj_attach_shadow_conf_to_view ( c_cur );
PLA_Read ( c_cur);

while (TRUE )

{

PLA_vObj_split_size ( a_panel next, PLA_SIDE_LEFT,
& size );

if ( size == 0 ) break;

PLA_Obj_vert_split_2 ( a_panel_next, size, & a_panel_cur,
& a_panel_next );

PLA_Obj_vert_split_2 ( a_next, size, & a_cur, & a_next);
PLA_Obj_attach_shadow_conf_to_view ( a_panel_cur);
PLA_Obj_attach_shadow_conf_to_view (a_cur);
PLA_Read ( a_panel_cur);

PLA_Read (a_cur);

PLA_Gemm ( PLA_NO_TRANS, PLA_TRANS, minus_one,
a_cur, a_panel_cur, one, c_cur );

}
PLA_Obj_free ( & a_panel_cur);

PLA_Obj_free (& a_cur);
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PLA_Obj_view_all ( c_diag, & c_diag cur);
PLA_Obj_attach_shadow_conf_to_view ( c_diag cur);
PLA_Read ( c_diag cur);

PLA_Trsm ( PLA_SIDE_RIGHT, PLA_LOW_TRIAN,
PLA_TRANS, PLA_NONUNIT_DIAG, one, ¢_diag_cur,
c_cur);

PLA_Write ( c_cur);

PLA_Obj_free (& c_diag cur);

PLA_Obj_free (& c_cur);

}

PLA_Obj_view_shift ( a_matrix, 0, 0, diag_size, 0 );
}
PLA_Obj_free ( & one);
PLA_Obj_free ( & minus_one );
PLA_Obj_free ( & a_panel );
PLA_Obj_free ( & a_panel_cur );
PLA_Obj_free (& a_panel_next);
PLA_Obj_free (& a_matrix );
PLA_Obj_free ( & a_matrix_next );
PLA_Obj_free (& a_cur);
PLA_Obj_free (& a_next);
PLA_Obj_free (& c_diag);
PLA_Obj_free ( & c_diag cur);

PLA_Obj_free (& c_cur);
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100 PLA_Obj_free ( & c_panel );

101 PLA_Obj_free ( & ¢_matrix );

102 }

Figure 12 PLAPACK Cholesky - Virtual Object Implementation
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4.3.2 Triangular Solve Multiple RHS

The parallel

triangular solve with multiple right-hand-sides

implements a variation of the algorithm presented in Appendix G. The

following description of the LLNN variant refers to Figure 13. The LLTN

variant possess a similar implementation.

Lines 13-19

Lines 20-24

Lines 27-34

Lines 39-58

Lines 64-73

Creates the multiscalar scale parameters required by the
BLAS function calls.

Initializes the views into the matrix objects. The
algorithm proceeds by first computing the contribution to
the row panel B, of the previously solved elements in the
matrix above By. The update of B, based on the diagonal
block 4 occurs at the end of the algorithm. The algorithm
presented in the appendix computes the update first and
then applies the contribution of the update to the
remainder of the matrix.

Determine the length of matrix row panel Apsne Which can
completely exist in parallel memory. If size is equal to
zero, the operation is complete. Otherwise, create views
into the appropriate matrix blocks.

Compute the contribution of the previous solutions on the
current row panel of B.

Update the current row panel of B using the current
diagonal block of 4.
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12

13
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17

18
19

20
21

22

23

24

25

26

int PLA_vTrsm_lin (int diag, PLA_Obj alpha, PLA_Obj a, PLA_Obj b)

{

int top_size, left_size, size;

PLA_Obj a_matrix = NULL, a_panel = NULL, a_diag = NULL, a_cur =

NULL,
b_matrix = NULL, b_panel = NULL,
b_done = NULL, b_done_matrix = NULL,
b_panel_cur = NULL, b_panel_next = NULL,
b_cur = NULL, b_next = NULL,
one = NULL, minus_one_over_alpha = NULL;

PLA_Mscalar_create_conf_to (alpha, PLA_ALL_ROWS,
PLA_ALL_COLS, & one );

PLA_Obj_set_to_one ( one);

PLA_Mscalar_create_conf_to ( alpha, PLA_ALL_ROWS,
PLA_ALL_COLS, & minus_one_over_alpha);

PLA_Obj_set_to_minus_one ( minus_one_over_alpha );
PLA_Inv_scal ( alpha, minus_one_over_alpha );

PLA_Obj_view ( a, PLA_DIM_ALL, 0, PLA_ALIGN_FIRST,
PLA_ALIGN_FIRST, & a_matrix );

PLA_Obj_view (b, 0, PLA_DIM_ALL, PLA_ALIGN_FIRST,
PLA_ALIGN_FIRST, & b_done );

PLA_Obj_view_all ( b, & b_matrix );
while ( TRUE )
{
PLA_vObj_split_size ( a_matrix, PLA_SIDE_TOP, & size );

if ( size == 0 ) break;
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27

28

29

30

31

32

33
34

35

36

37

38

39

40
41

42

43

45

46

47

48
49

50

)

PLA_Obj_view_shift ( a_matrix, 0, 0, size, 0 );
PLA_Obj_horz_split_2 ( a_matrix, size, & a_panel, & a_matrix );
PLA_Obj_horz_split_2 ( b_matrix, size, & b_panel, & b_matrix );
PLA_Obj_vert_split_2 ( a_panel, -size, & a_panel, & a_diag);
PLA_Obj_view_all ( b_done, & b_done_matrix );
PLA_ODbj_view_shift ( b_done, 0, 0, 0, size );

/* while the view shift may seem out of place, it is necessary for the next
iteration */

while (TRUE)

{
PLA_vObj_split_size ( a_panel, PLA_SIDE_LEFT, & size );
if ( size == 0) break;
PLA_Obj_vert_split_2 ( a_panel, size, & a_cur, & a_panel );

PLA_Obj_horz_split_2 ( b_done_matrix, size, & b_next,
& b_done_matrix );

PLA_Obj_attach_shadow_conf_to_view ( a_cur );

PLA_Read (a_cur);

PLA_Obj_view_all ( b_panel, & b_panel _next );

while (TRUE )
PLA_vObj_split_size ( b_next, PLA_SIDE_LEFT, & size %
PLA_Obj_vert_split_2 ( b_next, size, & b_cur, & b_next );

PLA_Obj_vert_split_2 ( b_panel_next, size, & b_panel_cur,
& b_panel_next );

PLA_Obj_attach_shadow_conf_to_view ( b_cur );

PLA_Obj_attach_shadow_conf_to_view ( b_panel_cur );
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53
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56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71

72

73

74

75

PLA_Read ( b_cur);
PLA_Read ( b_panel_cur );

PLA_Gemm ( PLA_NO_TRANS, PLA_NO_TRANS,
minus_one_over_alpha, a_cur, b_cur, one, b_panel_cur );

PLA_Write ( b_panel_current );
}
PLA_Obj_free (& b_cur);
PLA_Obj_free ( & b_panel_cur );
PLA_Obj_free ( & a_cur);
}
PLA_Obj_attach_shadow_conf_to_view ( a_diag );
PLA_Read ( a_diag );
while ( TRUE )
PLA_vObj_split_size ( b_panel, PLA_SIDE_LEFT, & size );
PLA_Obj_vert_split_2 ( b_panel, size, & b_cur, & b_panel );
PLA_Obj_attach_shadow_conf_to_view ( b_cur );
PLA_Read ( b_cur );

PLA_Trsm ( PLA_SIDE_LEFT, PLA LOW_TRIAN,
PLA_NO_TRANS, diag, alpha, a_diag, b_cur);

PLA_Write ( b_cur );
}
PLA_Obj_free (& a_diag);

PLA_Obj_free (& b_cur);
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90
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PLA_Obj_free ( & a_matrix );
PLA_Obj_free ( & a_panel );
PLA_Obj_free (& a_diag);
PLA_Obj_free (& a_cur);
PLA_Obj_free ( & b_matrix );
PLA_Obj_free ( & b_panel );
PLA_Obj_free (& b_done);
PLA_Obj_free ( & b_done_matrix );
PLA_Obj_free ( & b_panel_cur );
PLA_Obj_free ( & b_panel next);
PLA_Obj free (& b_cur);
PLA_Obj_free ( & b_next);
PLA_Obj_free (& one);
PLA_Obj_free ( & minus_one_over_alpha);

return (PLA_SUCCESS );

Figure 13 PLAPACK TRSM - LLTN Variant Virtual Object
Implementation
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4.4 Numerical Integration
The issues of numerical integration concern the relative cost between
the physical system model and the accumulation operation. Allowing / to be

the maximum degree and order of the geopotential expansion, the
accumulation increases according to 8(1 4). (The symmetric rank-k operation
requires mn’ floating point operations where m corresponds to the number of
observations and n corresponds to the number of gravity field parameters, or
(I+1)*.) The observation model costs increase at only 9(1 2) under the same
conditions. (The force model requires the evaluation of the Legendre
associated functions, a recursion over 9(/%) elements, and the spherical
harmonic evaluation, a summation over 9() terms. The number of first order
differential equations to be integrated is 42+6(l+1)2, or 8(12).) On serial
architectures the cost of the accumulation quickly dominates the cost of the
algorithm [Bettadpur 1993].

The implementation on parallel architectures requires an examination
of the distribution of each component’s computations of over the processor

array. For example, given a problem defined by /, the wall clock time required
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to generate the observations and the wall clock time required to accumulate

the observations would be expressed by Equation (45).

S
I:Jbsgen = —)_
Rob:gen })ob.\'gen
4
];ccum = 2 ( lm )
RemP

accum ™ accum

where R specifies the per processor speed of the operation and the P specifies
the number of processors over which the operations are distributed. The
percentage of time spent performing the observation generation is expressed in

Equation (46).

1 R,...P

F = accum ™’ _accum
obsgen 9(1;“) R +R P

obsgen P, obsgen accum = accum

The fraction of the time spent performing observation equation
evaluations decreases with 9(%) if the problem size is permitted to grow
without any changes in the number of processors. However, if only the
accumulation is spread over and increasing number of processors without any
loss of efficiency, the fraction of the time spent performing observation
evaluations increases to one. The observation generation functions must be
effectively distributed to avoid placing a speed-up bound on the combined

algorithm.

119

(45)

(46)



The investigation of parallelizing the numerical integration focused on
two approaches. The first partitioned the system of equations at natural
boundaries, and the second partitioned the interval of integration. Neither was
found to be completely satisfactory for a costly observation model.

Natural partitions in the system of first order equations are identified
according to the decoupling of equations above and below the partition point.
Assuming perturbed two-body motion, one such break occurs between the
equations of different satellites. The complete integration vector may be
distributed across the processor array such that the partition boundaries
correspond to the natural breaks in the differential equations. Since the
equations are not coupled between breaks, no inter-processor communication
is required to complete the integration. Most problems, however, do not
examine the trajectories of an ever increasing number of satellites as the
number of processors is increased. Once the number of processors exceeds
the number of satellites, no additional parallelism may be obtained, and the
algorithmic cost imbalance as described previously will occur.

A second method of decomposition occurs by partitioning along the
interval of integration. Each processor is responsible for propagating the orbit
and generating observation equations along the designated sub-interval. The

load imbalance problems associated with the previous method do not occur.
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However, an overhead cost is incurred from the propagation of the satellite
from the global initial epoch to the local sub-interval epoch and the restart of
the integration at the sub-interval epoch. This method of decomposition
requires that enough memory exists on the local processor to perform the

integration for all satellites in the physical system.
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3. Software Design

Application development for this research requires the integration of
serial and parallel components into a single software package. An improper
interface between components creates bottlenecks in parallel performance.
The implementation methods which lead to high performance algorithms
result from experimentation and iteration of design. The examination of the
gradiometer and GPS application requirements yields a generalized expression
of the batch least squares algorithm for distributed memory parallel

architectures.

5.1 Computational Constraints

The primary constraints on application performance involve memory
capacity and processing speed. Each constraint affects the performance of
each application scenario in a different manner. Since the computational cost
of modeling the gradiometer is relatively small, the accumulation cost
dominates the application. Wall-clock cost restrictions on the generation of
gradiometer normal equations are effectively non-existent. Any gradiometer
problem which fully resides in memory may be processed in a reasonable
amount of time. The computational cost of processing GPS information is

significantly larger and suffers from the inability to effectively parallelize
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numerical integration operations. The amount of geopotential information
recovered from GPS data is primarily constrained by the wall-clock cost of the
operation.

The performance characteristics of a distributed memory architecture,
both in terms of memory and speed, vary with the number of processors. The
analysis should be scaled according to the available number of processors to
most effectively utilize system resources. Table 5 presents the approximate
memory usage per processor for the different application components. The
memory usage of the accumulation grows with the forth power of the
maximum gravity field degree and dominates the overall memory usage. The
memory usage of the other application components grow with the square of

the maximum gravity field degree.

Operation Memory Usage per Processor (bytes)
Normal Equation Accumulation 8 4 2
—|+1)" +m,,(+1)
o |
Gravity Field (Potential, Force and Gradient) 1 12(1 + 2)(1 + 1)
| Gradiometer Observation 8(I+ 1)2
Satellite Tracking Observation 32(1 + 1)2

Table S Memory Requirements for Application Algorithms
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Table 6 presents the operation counts for the different application

components. Dense matrix operations are -9(n3) where n is the dimension of
the matrix. Since n=(/+ 1)2 for the gravity field problem (See Appendix D),
the operations become .9(1 6) where / is the maximum degree of the spherical
harmonic expansion. The observation and dynamic model algorithms consist
primarily of summations over the gravity field coefficients requiring 9(12)

operations. The processing efficiency varies between the different algorithms.
The linear algebra operations execute optimized subprograms which approach
the expected sustained performance of the architecture. The observation
operations implement compiler optimized code which achieve only a fraction

(5-10%) of the performance capability.

Operation Number of Operations
Accumulation (SYRK) m(l + 1)4
Cholesky l ( I+ 1)6

3
Matrix Inversion (TRSM) 2( 1+ 1)5
Gradiometer Observation 116172
Satellite Tracking Observation 12(/+ 1)2

Table 6 Computational Cost for Application Algorithms
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The operation count for numerical integration was not calculated.
Instead, empirical models based on the integration of the single satellite state
and state transition matrix over an arc of one day were developed and the
results are presented in Figure 14. A seventh order Adams-Bashforth-Moulton
integration method with mesh sizes of 30 seconds, 45 seconds and 60 seconds
(curves top to bottom) are shown. The starting cost associated with the

multistep methods is included in the integration cost.

Integration Wallclock Time for a Single Satellite and State
Transition over a Single Day Arc Length

350 /

300 /
- 250 =
g / pad
g 200 7
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0 15 30 45 60 75 90
Gravity Field Degree

Figure 14 Computational Cost for Numerical Integration

5.2 Parallel Batch Estimation Algorithm

The serial batch estimation algorithm requires restructuring for use on
distributed memory parallel architectures. For large numbers of estimated

parameters, the normal matrix is too large to exist completely on a single
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processor. The accumulation of information into the distributed matrix should
exploit the performance capabilities of the multiple processors. Also, as
mentioned in the previous chapter, the observation modeling process must
effectively parallelize in order to fully realize the performance gain.
Implementation of an effective batch estimator on a distributed memory
architecture requires the development of a generalized parallel batch
estimation algorithm.  The following discussion assumes all system
components are memory resident.

The batch algorithm may be partitioned according to the batch object
methods and the physical system modeling methods. The batch object
methods primarily consist of linear algebra operations and account for the vast
majority of floating point operations. Parallel linear algebra is a well-
understood process which can be implemented with a high degree of
efficiency. Physical system models center on the implementation of the
numerical integration process. = The previous chapter described two
approaches to parallelizing numerical integration. Of the two approaches,
partitioning along the interval of integration promises the best scalability.

The parallel batch paradigm used the above partitioning to decompose
functionality into serial and parallel executing components. The observations

are generated in a data-parallel manner with each processor computing the
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partials corresponding to a different interval of integration. The accumulation
occurs in a work-parallel manner with all processor updating the same normal
matrix.

Two variants were considered in the first implementations. An
integrated method required each processor to participate in both the
observation generation and the accumulation operations. A partitioned
method grouped the processors according to function. Each methodology
yielded advantages and disadvantages. The integrated method exhibited better
load balancing characteristics due to the data parallel nature of the work
sharing. The necessary storage of model simulation components limited the
amount of memory which could be dedicated to the linear system operations.
The partitioned method permitted an expansion of the problem size, but was
prone to load imbalance. Incorrect sizing of the processor groups allows one
group to complete sooner than the other. The integrated method was chosen
due to its ability to provide reliable high performance

Parallel accumulation requires the caching of a number of partial
arrays before performing an update of the normal matrix. To facilitate the
caching, the partial arrays are copied into the columns of a distributed batch
matrix The integrated approach requires each processor to simultaneously

generate different partial arrays. The method by which partial arrays are
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assigned to unique columns leads to two different expressions of the batch
algorithm. The static assignment of partials allocates the partials to the
columns, either explicitly or implicitly, at the beginning of each batch. The
dynamic assignment of partials allocates columns to the partials on a first
come, first serve basis though queries to an index server. The dynamic
assignment method places no assumptions on the ordering of partials allowing
operations such as on-the-fly observation editing.

The generalized data parallel batch algorithm with dynamic
assignment is presented in Figure 15. The generalized data parallel batch
algorithm with static assignment is presented in Figure 16. An explanation of

each algorithm follows the Figures.

Initialize application components
‘While (global observations remain)
‘While (local observations remain)
Read next local observation(s) at epoch
Integrate reference trajectory to epoch
Form local observation equations at epoch
While (observation(s) remain at epoch)
While (global partial batch is full) Accumulate
Send observation equation to global batch matrix
End while
Increment to next epoch ,
if (local processing completed) Send completion signal to all processors
End while
if (local processing completed) Accumulate
End while
Solve normal equations

Figure 15 Data Parallel Batch Algorithm with Dynamic Assignment
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The initialization process of the dynamic assignment algorithm creates
the necessary physical and mathematical objects and distributes the
observations to the processors. No assumptions are placed on the global
distribution of the observations.

The outer loop continues while observations exist to be processed.
Each processor tracks the availability of global observations through the index
server. Once a processor has completed its assigned observations, the
processor sends a signal to the other processors. Only after a completion
signal has been received from all the other processors will the local processor
be permitted to exit the outer loop.

The inner loop of the dynamic assignment algorithm is similar to the
serial batch algorithm. The accumulation operation is replaced by a query to
the index server and the communication of the local observation equation to
the global batch matrix. The index server allocates the column indices on a
first come, first serve basis. If the matrix is full, an accumulation operation
occurs. To guarantee progress of the algorithm, multiple observations at a
single epoch must be processed one at a time. Otherwise, invalid columns

may be assigned resulting in either a core dump or application deadlock.
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Initialize application components
While (global observations remain)
Read batch of observations
Initialize state at initial epoch
While (local observations remain)
Integrate reference trajectory to epoch
Form local observation equations at epoch
Send observation equation to global partial batch
Increment to next local epoch
End while
Accumulate
End while
Solve normal equations

Figure 16 Data Parallel Batch Algorithm with Static Assignment

The initialization of the static assignment algorithm creates the
necessary physical and mathematical objects. Distribution of the observations
and column indices occurs at the top of the outer loop. The local processor
exits the outer loop after all observations have been processed.

The inner loop of the static assignment algorithm is similar to the
serial batch algorithm. The accumulation operation is replaced by the
communication of the current observation equation to the global batch matrix.
After all local observation in the current batch have been processed, an

accumulation event occurs.

5.3 Batch Algorithm Implementations

Both variants of the data parallel batch algorithm produced successful

gradiometer imblementations. The static assignment algorithm performed
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slightly better. However, neither variants of the algorithm produced a
satisfactory GPS implementation. The dynamic assignment variant suffered
from severe load imbalances. The index server was implemented using a
master-slave approach directing all queries to a single processor. Individual
processors incurred large idle time while waiting for responses from the index
server. The server processor could not answer the index request until the
completion of local physical system calculations. The static assignment
variant fell prey to the inherent serialization of the numerical integration.
Since a batch of observations is not widely separated in time, many processors
shared the same integration sub-interval either during the processing of
observations or in the initialization of its own sub-interval. The dynamic
modeling proceeded in an essentially serial manner and produced bottleneck
in the overall algorithm.

The GPS application was redesigned using the second parallelization
strategy for numerical integration. A single GPS satellite and the gradiometer
satellite was assigned to each processor, and a serial batch algorithm was used
to accumulate the observations associated with the high-low satellite pair. The
computations proceeded perfectly in parallel over each subarc with the
exception of duplicated work in the integration of the gradiometer satellite.

The processors were synchronized in between subarcs to merge subarc
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information. The normal equations on each processor were merged at the
completion of the global arc. The implementation of the serial batch
algorithm restricted the problem size to that which could be contained on a
single processor. While not desirable for general purpose use, the method

produced results satisfactory for the completion of this research.
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6. Error Analysis and Results

A gradiometer error analysis similar to that presented by Colombo will
be conducted [Colombo, 1989]. The method requires the inversion of the
normal matrix generated during a gradiometer mission simulation. The
diagonal elements of the inverted normal matrix represent the a posteriori
variance of the estimated potential coefficients. The analysis ignores the right-
hand-side of the observation equations in order to reduce computational cost
and avoid the use of real or simulated observations. In this respect, the
analysis is not a true simulation study; however, the reduced cost permits the
examination of a broader range of satellite and instrument configurations in
the search of an optimal mission scenario. Analyses of this type are prevalent
in the literature [Colombo, 1989; Schrama, 1991; Koop, 1993; Visser, 1994].
The work presented here contributes to previous research through the
implementation of single point computations, and therefore added robustness,
to the analysis.

The case studies demonstrate the effectiveness of parallel methods
applied to the gravity field problem and the capability to perform a rigorous
solution of the high resolution geopotential from satellite gradiometer and
GPS observations. The information recovered from a satellite gradiometer

mission requires the use of ;;arallel methods in the formation of a batch least
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squares estimate. The complexity of the GPS dynamic model warrants
investigation of parallel numerical integration techniques. Besides illustrating
the successful implementation of parallel methods, the science results verify
previous error analyses which used approximate grid computation methods
and provide insight to the capabilities of rigorous analysis for the high degree

and order geopotential.

6.1 Observation Constraints

The uniform solution of the geopotential requires global coverage of
the Earth’s surface. Each coefficient in the geopotential expansion may be
expressed as an integral of an observed gravity signal over the surface of the
Earth [Colombo, 1981]. Incomplete coverage of the Earth’s surface removes
the contributions of omitted geographical areas and leads to errors in the
coefficients. The only satellite trajectory which can sample the entirety of the
Earth’s surface is a polar orbit. Gradient observations collected along a polar
orbit provides the best information about the geopotential.

The polar orbit, however, may not satisfy satellite specific mission
requirements, specifically power subsystem requirements, due to its changing
orientation with respect to the sun. Satellites which generate power from solar

panels must spend a significant portion of the orbit exposed to the sun. A
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common technique to maximize exposure of the satellite to the sun is to
exploit the oblateness of the Earth in order to maintain a perpendicular
orientation between the satellite orbit plane and the Earth-Sun radius. The
resulting sun synchronous orbit possesses a non-polar inclination. Satellites
located in non-polar orbits cannot collect observations within geographical
regions centered at the poles. The size of the geographical region within the
polar gaps, and therefore the errors introduced into the geopotential solution,
depends on the inclination of the orbit.

The size of the orbit’s semi-major axis results from a trade-off between
the strength of the gravity signal and the surface drag effects on the satellite.
The strength of the radial gravity gradient observable is proportional to the
cube of the satellite radius and decreases rapidly with increasing altitude. The
strongest gradient signals occur in the lowest orbits. However, drag effects
dominate satellite motion in low altitude orbits. The drag effects limit the
lifespan of the satellite and degrade the quality of the observation. An
acceptable range of altitudes for satellite gradiometers is approximately 250
km to 300 km.

The spatial resolution of the observations also effects the quality of the
geopotential estimate.  The sampling theorem dictates the necessary

observation spacing according to the spatial frequency of the gravity field
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signal. The shortest spatial wavelength harmonic associated with a degree /
.. 36 . .
coefficient is A =Tdegrees. According to the sampling theorem, the

unique resolution of the observed signal requires sampling at twice its
frequency or greater. For the gravity field harmonic of degree 1, the

observation spatial resolution in both longitude and latitude must be A* = 180

degrees or less. A summary of sampling resolutions for various spherical

harmonic expansion degrees is presented in Table 7.

Expansion Sampling Resolution
Degree (degrees)

2 90.

4 45,

12 15.

30 6.0

60 3.0

90 2.0
120 1.5
180 1.0

Table 7 Required Spatial Resolution for Gradiometer Observations

6.2 Orbit Design
The satellite gradiometer travels a trajectory with a repeating ground
track. The repeating ground track orbit provides uniform coverage of the

Earth’s surface and allows satellites to visit the same geographical locations
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once every repeat interval. Over time, the series of measurements provide the
ability to track temporal changes at that location. The desired surface
coverage resolution defines the repeat orbit parameters. The coverage
resolution significantly affects the resolution of the recovered gravity field.

Repeat ground track orbits are developed according to the iterative
solution to Lagrange’s planetary equations. The mean perturbations of the
non-spherical geopotential define the equations of the osculating orbit. Dr.
Srinivas Bettadpur of the University of Texas Center for Space Research
(UT/CSR) provided the orbit design tool used in this research. The different
gradiometer mission scenarios required the development of two repeat ground
track orbits. A polar orbit guaranteed global coverage for the mission. A sun
synchronous orbit left polar gaps in the coverage. A coverage resolution
capable of recovering a degree and order 360 gravity field defined the design
criteria for the repeat orbit.

The sampling interval requires that the spacing between ascending

ground tracks must be A’ = % = 0.5 degrees or less to insure observability

of a degree and order 360 gravity field. The spacing produces a repeat cycle

which consists of 720 revolutions. At an initial altitude of 275 km in a

circular orbit and a mean motion of 1.164x107° radians per second, a 45 day

137



repeat period is produced. Initial guesses for polar and sun synchronous orbits
were input into the design tool described above. The converged orbits for the

polar and sun synchronous orbits are presented in Table 8.

Polar Sun Synchronous
Altitude 249.71 km 261.98 km
Inclination 90.1 degrees 96.6 degrees
# revolutions 721 721

Table 8 Satellite Gradiometer Orbit Parameters

6.3 Problem Scaling

The resolution of the geopotential to be recovered depends on the
performance characteristics of the computational platform. The available
memory limits the linear system size and the number of gravity field
coefficients which may be estimated. As discussed previously, observations
with large dynamic model costs also pressure wall-clock constraints. Both the
size of the gravity field and the number of observations may be reduced to
bring the application wall-clock cost within specific constraints.

The limits imposed by the sampling theorem constrain the adjustment

of the observation sampling interval. As with the longitudinal spacing, the
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latitudinal spacing of the observations must be A® = 1? degrees or less. For

a satellite in a near-polar orbit, one observation must occur within every

&’ degree interval of arc traveled. Assuming a constant angular velocity of
60 .. . .
W = P degrees per second, the minimum required sampling interval

s

A
equates to &6t=—. Table 9 presents the sampling interval and the
1)

approximate number of observations for the satellite gradiometer and GPS

observation datatype.

Sampling Interval | Number of Observations

Gradiometer S seconds 777,600

GPS 15 seconds 1,400,000

Table 9 Summary of Sampling Quantities for Case Study

The Cray T3E distributed-memory parallel architecture located at the
University of Texas at Austin provides the baseline for problem scaling. The
machine possesses 44 DEC Alpha EV6 RISC processors of which a maximum
of 32 processors execute during a single production run. Each processor
contains 128 Mbytes of local memory and rates 600 Megaflops peak
performance. Vendor optimized subprograms provide high single-processor

performance. Using optimized BLAS, parallel accumulation and linear

139



system solve operations easily sustain 200 Megaflops per processor
performance.

The available memory on 32 processors of the T3E determined the
gradiometer application size. The two components using the largest amount
of memory were the normal matrix and a batch matrix that cached
observations prior to the accumulation. An empirical determination of the
maximum problem size demonstrated a capability to process a geopotential
model to degree and order 110. The normal matrix uses approximately 40
Mbytes per processor memory and the batch matrix uses approximately 20
Mbytes per processor memory. The dynamic model, temporary message
buffers and other operating system functions use the remainder of memory.

The available memory on a single processor of the T3E determined the
GPS application size. As with the gradiometer, the two components using the
largest amount of memory are the normal matrix and batch matrix. The
normal matrix corresponding to a degree and order 50 geopotential model

requires 54 Mbytes of memory.
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6.4 Case Studies

Three parallel applications collectively perform the geopotential error
analysis. The processing of the polar and sun synchronous orbits proceed
similarly.

The first application, gradio, generates the normal equations for the
satellite gradiometer observable. Batch queue time restrictions require the
partitioning of the 45 day arc into three 15 day arcs. The a priori variance on
the radial gravity gradients is 10> Eotvos (10" s%). Each job executes on 32
processors. The normal matrix accumulation is entirely memory resident. A
single normal matrix file structure is created for each 15 day integration
interval. PLAPACK virtual object /O routines facilitate the copying of
normal matrix data to disk.

Table 10 and Table 11 present the gradio application performance for
the polar and sun synchronous orbit solutions. The figures reflect the
performance of the accumulation and the overall application. The wall clock

time was computed by summing the execution time for all three 15 day arcs.

‘The timings illustrate the dominance of the accumulation costs as a fraction of

the total cost of the algorithm. The timings also illustrate the ability to

achieve high performance for a real POD application.
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Wall Clock Time ( seconds) Efficiency (Mflops/PE)

Application 21,684.7 170.1

Accumulation 18,239.8 202.2

Table 10 gradio Application Performance for Polar Orbit

Wall Clock Time ( seconds) Efficiency (Mflops/PE)
Application 21,696.1 170.0
Accumulation 18,255.6 202.1

Table 11 gradio Application Performance for Sun Synchronous Orbit

The second application, gps, generates the normal equations for the
GPS tracking observable. Batch queue time restrictions required the
partitioning of the 45 day arc into three 15 day arcs. The a priori variance on
the range observable is 5 mm. Each job executes 25 processors with one high-
low satellite pair allocated to each processor. The processing of the normal
matrix is entirely memory resident. A single normal matrix disk file is created
for each 15 day integration interval. Standard C I/O routines copy the normal
matrix to disk. Utility routines redistribute the data into a form suitable for
PLAPACK virtual objects.

Table 12 and Table 13 present the gps application performance for the

polar and sun synchronous orbit solutions. The figures reflect the

142



performance of the accumulation and the overall application. The wall clock
time was computed by summing the execution time for all three 15 day arcs.
The timings illustrate the dominance of the dynamic modeling cost relative to

the accumulation for an the GPS problem.

Wall Clock Time ( seconds) Efficiency (Mflops/PE)
Application 18,008.4 219
Accumulation 4,942.6 79.8

Table 12 gps Application Performance for Polar Orbit

Wall Clock Time ( seconds) Efficiency (Mflops/PE)
Application 18,055.3 21.9
Accumulation 4,990.2 79.1

Table 13 gps Application Performance for Sun Synchronous Orbit

The last application, xena, implements a general out-of-core linear
system solver using PLAPACK virtual objects. The application merges an
arbitrary number of matrices and performs the matrix inversion. xena’s input
consists of a list of filenames and corresponding matrix dimensions. The
input data file must exist in a PLAPACK I/O format. For this case study, xena
summed and inverted the normal matrices corresponding to the gradiometer

only, GPS only and the combination solution.
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Table 14 and Table 15 present the xena application performance for the
polar and sun synchronous orbit solutions. The figures reflect the
performance of the gradiometer only solution, but the combination solution
performance is similar. The timings illustrate the good performance of the

PLAPACK virtual object methods.

Wall Clock Time (seconds ) Efficiency (Mflops/PE)
Total 1784 76.4
Cholesky 219.7 88.7
Inversion 911.9 128.2

Table 14 xena Application Performance for Polar Orbit

Wall Clock Time (seconds) Efficiency (Mflops/PE)
Total 1759 77.5
Cholesky 218.2 89.3
Inversion 930.7 125.6

Table 15 xena Application Performance for Sun Synchronous Orbit
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6.4.1 Polar Orbit Solutions

Figure 17 and Figure 18 presents the error degree variance for the polar
orbit solutions. The gradiometer only solution possesses greater uncertainty
for the lower degree coefficients. The GPS only solution possesses greater
uncertainty for the higher degree coefficients. The combination solution
receives the best characteristics of both datatypes. The combination solution,
however, does not remain completely under the GPS solution at the low
degrees. Also, a discontinuity exists on the combination solution variance
triangle plot in Figure 18. Optimal weighting strategies for combining the two

datatypes may provide a possible solution for both anomalies.

Error Degree Variance for Polar Orbit Solution
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Figure 17 Error Degree Variance for Polar Orbit Solution
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Figure 19 presents the geoid height variance for the polar orbit
solution. The gradiometer only solution produces a mean geoid height error of
25 millimeters. The GPS only solution produces a larger mean geoid height
error of 45 millimeters. The combination solution produces a significantly
improved mean geoid height error of 13 millimeters due to the improvement
in the lower order coefficient uncertainty. The cause of the spots in the GPS

geoid height variance plot is unknown.
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Figure 18. Coefficient Variances for Polar Orbit Solution

(see color plate on following page)
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Figure 19. Geoid Height Variance for Polar Orbit Solution

(see color plate on following page)
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6.4.2 Sun Synchronous Orbit Solutions

Figure 20 and Figure 21 present the error degree variance for the sun
synchronous orbit solutions. The gradiometer only solution possesses greater
uncertainty across the range of coefficients due to the loss of information at
the poles. The high variance along the zonal coefficients as seen in Figure 21
further illustrates the deficiency. The GPS only solution is similar to the polar
orbit solution. The combination solution illustrates the ability to incorporate
the GPS observability of the zonal coefficients into the gradiometer solutions.
The error degree variance of the combination solution is almost identical to
the polar solution. However, deficiencies still exist in the zonal coefficients as

seen in the variance triangle plot.

Error Degree Variance for Sun Synchronous Orbit
Solution
1.00E-07
1.00E-08
... Lt
1.00E-09 Jramasdad S
@ (XY TP vy
g 2 - I SESEL, oy
£ 1.00E-10 f
(J -
> 1001 —p—t—>+ L 1" Gradio |
— - = =GPS
1.00E-12 Combine
1.00E-13 + ! }
0 15§ 30 45 60 75 90 105 120
Gravity Field Degree

Figure 20 Error Degree Variance for Sun Synchronous Orbit Solution
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Figure 22 presents the geoid height variance for the sun synchronous
orbit solution. The gradiometer only solution’s inability to resolve the zonal
coefficients produces an extreme mean geoid height error of 224 millimeters.
The GPS only solution produces a larger mean geoid height error of 51
millimeters. The combination solution produces a significantly improved
mean geoid height error of 17 millimeters further illustrating the necessity to
incorporate GPS tracking information into the sun synchronous gradiometer
solution. The cause of the streak in the GPS geoid height variance plot is

unknown.
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Figure 21. Coefficient Variances for Sun Synchronous Orbit Solution

(see color plate on following page)
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Figure 22. Geoid Height Variance for Sun Synchronous Orbit Solution

(see color plate on following page)
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Figure 22 Geoid Height Variance for Polar Orbit Solution
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7. Conclusions

The examination of computational aspects associated with the global
geopotential recovery problem constitutes the theme of this work. The
primary subject matter addresses specifically the use of satellite gradiométer
and unbiased GPS slant range observations to form and invert the normal
matrix associated with a large degree and order geopotential solution.
Memory resident and out-of-core parallel linear algebra techniques along with
data parallel batch algorithms form the foundation of the least squares
application structure. A secondary topic includes the adoption of object
oriented programming techniques to enhance the modularity and reusability of
code. Applications implementing the parallel and object oriented methods
successfully calculate the degree variances for a degree and order 110

geopotential solution on 32 processors of the Cray T3E.

7.1 Object Oriented Programming

Application software developed as part of this research utilizes the
design philosophy of object oriented programming.  Precision orbit
determination applications require two general classes of objects. The
physical class abstracts the physical objects that comprise the satellite

environment. The mathematical class abstracts the mathematical techniques

153



used in the simulation analysis. The prototype satellite application library,
OOPOD, demonstrates how OOP effectively manages complexity and
contributes to the development of modular and highly useable library
components. A series of examples in the text and the appendicies illustrate
the facility of the library in developing common orbit determination

applications.

7.2 Parallel Processing

The performance capabilities of parallel processing enable the rigorous
examination of the high resolution geopotential problem. Physically Based
Matrix Distribution distributes of parallel linear algebra operations according
to the data mapping of the linear system domain and range spaces.
Communications between different linear algebra objects proceed using well-
defined collective communication operations. Parallel BLAS Level 3
operations necessary for accumulation and matrix inversion build upon the
PLAPACK library infrastructure. In addition, modifications to the PLAPACK
infrastructure extend the capability of PLAPACK to out-of-core methods.
Virtual object methods perform the linear system solve operations required for

the geopotential recovery.
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7.3 Algorithm and Software Development

Three different pieces of application software provide the functionality
required for the completion of this research. Two data parallel applications
generate the normal equations for satellite gradiometer and GPS observations.
Each application implements a different approach to data parallelism
depending on the complexities of the dynamic model. A single linear system
solve application completes the matrix inversion. The case studies verify the
software functionality through the computation of gravity field degree

variances for a simulated mission scenario.

7.4 Conclusions

7.4.1 Object Oriented Programming

Object oriented programming techniques effectively manage
complexity in precision orbit determination software. The association of data
and algorithms into objects removes unnecessary complexity from the scope
of the application developer. Object encapsulation permits the addition of
new functionality or changes in implementation without modification to
existing software.

The OOPOD library illustrates the modular nature of objects and

demonstrates the facility of such a library. "A well-designed library could
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support many different applications sharing similar physical and mathematical
methods.

Objects designed according to the physical and mathematical entities
in the POD problem induce computational algorithms which mirror the natural
description of the solution process. For example, POD applications
manipulate satellite objects in terms of the forces governing the satellite
motion.  The similarity between algorithm description and software
implementation enhances the readability and maintainability of code.

The initial development cost of an object oriented design slightly
exceeds structured programming techniques due to the additional work of
developing the object infrastructure. Reuse of software through the addition
of new functionality (which is a much simpler process when working in terms

of objects) and incorporation into libraries offsets the development costs.

7.4.2 Parallel Processing
The PLAPACK library infrastructure simplifies the development of

high performance parallel linear algebra functions. Algorithms developed
using the PLAPACK style of coding mirrors the natural description of linear

algebra block algorithms.
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The use of vendor optimized Level 3 BLAS maximizes the
computational performance of each processor. PLAPACK communication
based on PBMD and MPI efficiently moves data between processors.

Virtual object performance depends on the available I/O hardware and
the method of data communication between disk and memory. Effective
performance requires the movement in data in contiguous blocks. Algorithms
that minimize I/O requests achieve good performance on systems with shared
file systems such as the University of Texas Cray T3E.

PLAPACK objects permit the integration of parallel memory resident
and out-of-core linear algebra operations into a single general implementation.
The complexity of an architecture independent IO infrastructure exists
completely within the object. Linear algebra object views continue to provide
the interface with user applications. The addition of object methods which
mirror standard C VO functions provide the functionality to transfer data

between memory and disk.

7.4.3 Algorithm and Application Design

The complexity of dynamic and observation models, the amount of
memory required for linear algebra operations and the existence of inherently

serial computations all influence the parallel performance of POD
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applications. In particular, the propagation of satellite trajectories governed by
complex dynamic models through numerical integration techniques
significantly inhibit the parallelization of POD code.

Many design options exist for the parallelization of POD applications.
The combination data-parallel and work-parallel design attains good
performance for the satellite gradiometer application. The numerical
integration creates a bottleneck in the GPS application due to the increase in
the number of satellites and the complexity of the dynamic model.

The three software applications, gradio, gps and xena, illustrate the
successful merging of parallel processing and POD applications. The results
of the case studies confirm the software design approach by verifying previous

results presented by Schrama [1991], Koop [1993] and Visser [1994].

7.5 Recommendations

7.5.1 Object Oriented Programming

The OOPOD infrastructure prototypes only a subset of the components
required for generalized POD applications. A complete implementation
requires additional force models (e.g., drag, third-body) , additional
observation models (e.g., range-rate, GPS double difference), more complete

satellite models (e.g., satellite orientation) and additional estimation and
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integration techniques (e.g., orthogonal transforms, runge-kutta, second-order
methods). A complete implementation would also include libraries of derived
objects corresponding to specific satellite systems (e.g., TOPEX/Poseidon,

GPS).

7.5.2 Parallel Processing

The numerical integration of complex dynamic models constitutes the
primary obstruction to generalized parallel POD applications. Futher progress
in the development of generalized applications requires an examination of
parallel numerical integration algorithms.

The current PLAPACK VO design exposes the file structure and
requires the application developer to manage the memory to disk
communications. All /O operations would become transparent by extending
the view functionality to control data caching within the memory resident
portion of the virtual object.

The MPI-2 specification includes an architecture independent parallel
/O interface. Adherence to the MPI-2 specification could simplify the
PLAPACK I/O implementation and increase the portability of the PLAPACK

library. The potential benefits warrant the close examination of MPI-2.
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7.5.3 Algorithm and Application Design

An increase in the number of processors used in the analysis would
permit an increase in the geopotential resolutions. Similar case studies
performed on larger architectures would verify the scalability and provide
information concerning the stability of the least squares solution at larger
problem sizes.

In the sun synchronous case study, the inclusion of satellite tracking
information causes a significant improvement in the geopotential degree
variances. The result does not necessarily imply a corresponding increase in
estimated coefficient accuracy. A rigorous simulation study would clarify the
relationship between degree variances and coefficient accuracy for high

resolution geopotential models.
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Appendix A CRF to TRF Transformations

The first order transformation from the CRF to the TRF is
accomplished via nine plane transformations. The first six rotations
correspond to external torque effects due to general precession and nutation.
The last three rotations correspond to torque free motion of the pole due to

time varying rotation and polar motion

e = R (_x ’ )Rl (—y P )R3 (azfm )

R (£~ 8&)R,(AW)R ()R, (-2, )R, (6.1 )R, (C a );‘—CRF

The evaluation of the terms found in Equation (47) require the
definition of several time systems. The time systems may be grouped into
three categories: dynamic time, atomic time, and sidereal time. Dynamic time
is the independent variable in the equations of motion. Atomic time is a
uniformly running time scale used for basic time keeping purposes. Sidereal
time is a measure of the Earth rotation. The primary rotation angle between
the CRF and the TRF is Greenwich Apparent Sidereal Time (GAST).
Variations in Earth rotation are usually expressed as differences between UT!
and UTC. The different time systems are related to GAST via the following

relationship.
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X ast = Qgysy, +

d—(O;GtLST)[TDT- (IDT - TAI) - (TAI - UTC) - (UTC - UT1)]+ (48)

Egn.E

International Atomic Time (TAJ) is related to Terrestrial Dynamic
Time (TDT) by the relation TDT = TAI+32.184 seconds. The fundamental
unit of TA/ is one SI second which is equivalent to 9,192,631,770 periods of
transition between two hyperfine levels of the ground state of Cs-133 [Bock,
1996]. The SI day is defined as 86400 seconds, and the Julian century as
36525 days.

The Julian date is defined as the number of days from 12" UT Jan 1,
4713 BCE. The standard epoch is taken as J2000 = JD 2451545.0 = 2000 Jan
195 UT. Time indexes for the rotational quantities are usually expressed in

Julian centuries since J2000.

_ JD-2451545.0
36525

For civil time keeping purposes, Universal Coordinated Time (UTC) is
an atomic time-keeping standard to which leap seconds are added and
subtracted such that |[DUT1| = |UTC - UT}| < 0.9 seconds.

Greenwich Apparent Sidereal Time (GAST) is the local hour angle

between the Greenwich meridian and the true vernal equinox (i.e., corrected

162

(49)



for precession and nutation). Green Mean Sidereal Time (GMST) is not
corrected for nutation effects. The two angles are related by the equation of

equinoxes where € is the mean obliquity, Ae is the nutation in obliquity, and

Ay is the nutation in longitude.

Eq.E = a5 — Qg = Ay cos(e + Ag)

The apparent motion of the sun about the Earth is non-uniform due to
the eccentricity of the Earth’s orbit. Universal Time (UT) is defined as the
hour angle of a fictitious mean sun which moves with constant velocity along
the equator. UT! is universal time corrected for polar motion. The
relationship between UT/ and GMST is given where Ty expresses the fraction
of Julian century since J2000 UT.

O sy = UT1+6741750.° 54841 +
8640184.°812866T,, +0.°0931047, +6.°2x107° T;

d
-(5;”—") =1°.002737909350795 + 5°.9005x10 "' T, — 5* .9x107* T}
t

d (a GMST ) UT1

@ Gust = Xoust, + a

The main motion of the Earth’s rotation axis is due to luni-solar
attraction on the Earth’s equatorial bulge. The precession period is 25,800
years with an amplitude of 2325. The combination of this effect with the

precession caused by other planetary bodies is termed general precession. The
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nutation of the Earth’s rotation axis is a shorter period oscillation with periods
of 1 day to 18.6 years.

The CREF is defined as a geocentric, equatorial frame with the mean
equinox and equatorial of J2000 according to the 1976 IAU convention. The
definition is supplemented by the 1980 nutation series for an Earth with a
liquid core and elastic mantle [Wahr, 1979]. The precession and nutation
quantities are given in terms of fraction of Julian century since J2000 and time
from specified epoch.

¢, =(2306".2181+1".39656T —0".0001397% )t +
(030188 —0".000344T)¢* +0".017998¢°

z, =(2306".2181+1".39656T — 0".000139T* )z +
(1".09468 — 0”.000066T)z* +0".018203¢°

8, =(2004".3109 - 0".853307 - 0".000217T% )t -
(0".42665~0".000217T)¢* — 0".041833¢

(52)

£ = (84381".448 — 46" 81507 + 0".0005972 +0”.001813T>) +
(—46".815-0".00177T +0".005439T* )z + (53)
(=0".00059 + 0”.005439T)* +0".00181¢>

The nutation in obliquity and nutation in longitude are defined in terms
of 5 fundamental arguments of the sun and moon: mean anomaly of moon (J),

mean anomaly of sun (/’), mean argument of latitude of moon (F), mean
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elongation of moon from the sun (D) and mean longitude of ascending lunar

node (Q).

Ay = é[(Aoj + 4, jT)sin[g kj,.a,.(T)H
Ac= ZN:[(BO ,+B, T)cos(g kj,.a,.(T)H

j=l

(54)

a, =1=485866".733 +(1325" +715922".633)T +31".310T* +0".064T"*

o, =1'=1287009".804 + (99" +1292581".224)T - 0".577T* - 0".012T°

o, = F=335778".877+(1342" +295263".137)T -13".257T* +0".0117° (55)
a, =D =1072261".307+(1236" +1105601".328)T —6".891T% +0".0197T"

o, =Q=450160".280—(5" +482890".539)T +7".455T* +0".008T"

Movement of the rotation axis is also influenced by elastic properties
of the Earth and the exchange of angular momentum between the solid Earth,
oceans and atmosphere. The polar motion of the true celestial pole as defined
by precession and nutation corrections contains a free component with a
period of about 430 days (Chandler period), and a forced components with
dominant terms at the diurnal (tidal forces) and annual (atmosphere
excitations) periods. The polar motion parameters and difference UTC-UT]

are tabulated from observational values.
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Appendix B Conversion of Gravity Gradients from
Body Fixed Spherical to Topographic
Coordinates

The expressions for the gravitational accelerations and gradients

expressed in topographic coordinates were restated by Bettadpur [1992].

1 U,
rcos¢
U, = lU¢ (56)
r

U, =

U
rcosg ~  ricos¢ (57)

uu m

The following is C-like pseudocode of an efficient algorithm to make
the conversion. The partials with respect to the gravity field coefficients are

converted using Level 1 BLAS routines.

/* Input */
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a=[U, U, U,

8=[Un Un Uy Upy Uyy Uy 1

ap = [ dU.da dU,da dU,da |

gp = [ dUpda dUnda dUyda dUjda dUjyda dUgda |

/* accelerations */
a[l} *=1/(r*cos ¢);
af2] *=1/r;
tmp = a[0} ; a[0] = a[1] ; a[1] = a[2] ; a[2] = tmp;

/* gradients */

gll]*=1/(r*cos ¢ ); g[1] +=-a[0] / r;

gl2] *=1/r; g[2] +=-a[1] /r;

gl3]1*=1/(r**cos’¢); gl3]+=a[2]/r-(a[l] *sin ¢)/(r*cos ¢);
gldl *=1/(r**cos ¢ ); gld] +=(a[0] *sin ¢)/(r *cos ¢);

gls] *=1/r% gl5] +=a[2] / r;

tmp = g[0] ; g{0] = g[3] ; g[3] = g[5] ; &S] = tmp;
tmp = g[1] ; g{1] = g[4] ; gl4] = g[2] ; g[2] = tmp;

/* acceleration partials (length == number of partials) */
xSCAL (length,1/(r*cos ¢ ),ap[1 *length],1);
xSCAL (length,1/r,ap[2 *length ],1);
xSWAP (length,ap [0 *length ], 1,ap [ 1 *length |, 1);
xSWAP (length,ap [ 1 *length ], 1,ap [ 2 * length ], 1);

/* gradient partials */
xSCAL (length,1/(r*cos¢),gp (1 *length],1);
xSCAL (length,1/r,gp[2 *length ], 1);
xSCAL (length, 1/(r**cos’¢ ), gp [3 *length],1);
xSCAL (length, 1/ ( r! * cos ¢),gp[4*length],1);
xSCAL (length, 1/r% gp [5 *length],1);
xAXPY (length, 1/r,ap [0 * length ], 1,gp [1 *length ], 1);
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XAXPY (length,1/r,ap [1 *length],1,gp [2 * length ],1);

XAXPY (length,1/r,ap [2 *length ], 1, gp [ 3 * length ], 1);

xAXPY (length, -sin ¢ / (r * cos ¢ ), ap [ 1 *length ],1,gp [3 * length ], 1);
xAXPY(length,sin¢/(r*cos¢),ap[0*length],l,gp [4 *length], 1);
XAXPY (length,1/r,ap {2 *length ], 1, gp [5 * length ],1);

xSWAP (length, gp [0 *length ], 1,gp [3 * length ], 1);

xSWAP (length, gp [ 3 *length ], 1,gp [ 5 * length ], 1 );

ISWAP (length, gp [1 *length ], 1,gp [ 4 * length ], 1);

XSWAP (length, gp [4 * length ], 1, gp [ 2 * length ],1);

/* Output */
a=[U. U, U]
8= [Uee Uen Ueu Unn Upy Ui |
ap = [dU.da dUyda dU,da |
gp = [ dU.da dU,da dUyda dU,da dUyda dUda )
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Appendix C OOPOD Object Methods

C.1 Generic Physical Object

C.1.1 Properties

observable Specifies the ability to use the object as an observable
quantity
dynamic Specifies the requirement of numerical integration to

propagate the object’s state

force Specifies the ability to use the object as a dynamic force
effecting the motion of a satellite object

C.1.2 Interface

int32 PhysObj_create ( PhysObj * object );
int32 PhysObj_free ( PhysObj * object );
int32 PhysObj_isobservable ( PhysObj * object );
int32 PhysObj_isdynamic ( PhysObj * object );
int32 PhysObj_isforce ( PhysObj * object );

C.2 Generic Mathematical Object

C.2.1 Properties

realized Specifies the realization of the mathematical object via
association with physical objects

C.2.2 Interface
int32 MathObj_create (MathObj * object );
int32 MathObj_free ( MathObj * object );
int32 MathObj_isrealized ( MathObj * object );

169



C.3 Earth Orientation Parameters Table

C.3.1 Properties

number_points Number of points in the table

intervai Interval between points in the table
first_ut Epoch of first entry in the table
last_ut Epoch of last entry in the table
ut Epoch of current table interpolation
xp Polar motion of current table interpolation
yp Polar motion of current table interpolation
ut1_tai Time difference of current table interpolation
dutdtai Variation in time difference of current table interpolation
et_ut1 Time difference of current table interpolation
ut_table Array of table entries
xp_table Array of table entries
yp_table Array of table entries
ut1_tai_table Array of table entries
C.3.2 Interface
int32 EopTable_create ( char* filename,
int32 file_format,
EopTable * table );
int32 EopTable_free ( EopTable * table );
int32 EopTable_calculate ( EopTable table,
double julian_et );
int32 EopTable_ut ( EopTable table );
int32 EopTable_xp ( EopTable table );
int32 EopTable_yp ( EopTable table );
int32 EopTable_utl_minus_tai ( EopTable table );
int32 EopTable_dutdtai ( EopTable table );
int32 EopTable_et_minus_utl ( EopTable table );
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C.4 Reference Frame

C.4.1 Properties

julian_et
days_from_epoch
days_from_epoch_ut1
greenwich_mean
greenwich_true
et_ut1

dutdta

dghadt

xp

yp

nutation_longitude
nutation_obliquity
nutation_right_ascension
zeta

3

theta

mean_obliquity
true_obliquity
epoch2meanofdate
meanofdate2trueofdate
table

object

C.4.2 Interface

Epoch of current frame evaluation

Days from true-of-date reference epoch at evaluation
Time difference at evaluation

Hour angle at evaluation

Hour angle at evaluation

Time difference at evaluation

Variation in time difference at evaluation
Variation in hour angle at evaluation
Polar motion angle at evaluation

Polar motion angle at evaluation
Nutation angle at reference epoch
Nutation angle at reference epoch
Nutation angle at reference epoch
Precession angle at reference epoch
Precession angle at reference epoch
Precession angle at reference epoch
Defining frame angle at reference epoch
Defining frame angle at reference epoch
Rotation matrix

Rotation matrix

Earth orientation parameter table
Physical object properties

int32 RefFrame_create

int32 RefFrame_free

( char* filename,
int32 file_format,
RefFrame * frame );

( RefFrame * frame );
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int32 RefFrame_calculate ( int32 set_tod,
float64 epoch,
RefFrame frame );
int32 RefFrame_J2000_to_meanofdate ( RefFrame frame,
float64 * a);
int32 RefFrame_meanofdate_to_trueofdate ( RefFrame frame,
float64 * a);
int32 RefFrame_trueofdate_to_geocentric ( RefFrame frame,
float64 * a,
float64 * b);
int32 RefFrame_geocentric_to_topographic ( float64 radius,
float64 lambda,
float64 phi,
float64 * a);
int32 RefFrame_geocentric_to_rtn ( float64 * pos,
float64 * vel,
float64 * a);
int32 RefFrame_general ( float64 psi,
float64 theta,
float64 phi,
float64 * a);
int32 RefFrame_cartesian_to_spherical ( float64 * X,
float64 * radius,
float64 * lambda,
float64 * phi );
int32 RefFrame_spherical_to_cartesian ( float64 * X,
float64 radius,
float64 lambda,
float64 phi );
int32 RefFrame_merge ( int32 side,
int32 trans,
float64 * a,
float64 * b);
int32 RefFrame_vector ( int32 trans,
float64 * a,
float64 * x);
int32 RefFrame_tensor ( int32 trans,
float64 * a,
float64 * g
int32 RefFrame_vector_partials ( int32 trans,
float64 * a,
float64 * xp,
int32 length );
int32 RefFrame_tensor_partials ( int32 trans,
float64 * a,
float64 * gD,
int32 length );
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int32 RefFrame_set_global ( RefFrame frame );
int32 RefFrame_get_global ( RefFrame * frame );
int32 RefFrame_isobservable ( RefFrame frame );
int32 RefFrame_isdynamic ( RefFrame frame );
int32 RefFrame_isforce ( RefFrame frame );

C.5 Legendre Associated Functions

C.5.1 Properties

shape
degree
order
Idim
deriv

u

anm
bnm
fnm
pnm
dpnm
ddpnm

object

C.5.2 Interface

Shape of geopotential model

Maximum degree of expansion

Maximum order of expansion

Leading dimension of all matrix data

Specifies calculation of which derivatives

Argument of function
Recursion coefficients
Recursion coefficients
Recursion coefficients
Function evaluations
Function evaluations
Function evaluations

Mathematical object properties

int32 Legendre_create

int32 Legendre_free
int32 Legendre_calculate

int32 Legendre_index

( int32
int32
int32
int32
Legendre *

( Legendre *

( Legendre
float64

( Legendre
int32
int32

shape,
degree,
order,
deriv,
legendre );
legendre );
legendre,
u);
legendre,
n,

m );
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int32 Legendre_jndex

int32 Legendre_shape
int32 Legendre_degree
int32 Legendre_order
int32 Legendre_ldim
int32 Legendre_deriv
float64 Legendre_u
float64 * Legendre_anm
float64 * Legendre_bnm
float64 * Legendre_fom
float64 * Legendre_pnm
float64 * Legendre_dpnm
float64 * Legendre_ddpnm
int32 Legendre_isrealized

( Legendre
int32
int32

( Legendre

( Legendre

( Legendre

( Legendre

( Legendre

( Legendre

( Legendre

( Legendre

( Legendre

( Legendre

( Legendre

( Legendre

(Leggndre *

legendre,
n’
m );
legendre );
legendre );
legendre );
legendre );
legendre );
legendre );
legendre );
legendre );
legendre );
legendre );
legendre );
legendre );
_legendre );

C.6 Gravity Field

C.6.1 Properties

measurement Desired geopotential evaluation

coordinates Desired coordination system

shape Specifies geopotential model representation
radlus Function argument for current evaluation
lambda Function argument for current evaluation
phi Function argument for current evaluation
ae Geophysical constant

mu Geophysical constant

potential Function evaluation

acceleration0 Function evaluation in desired coordinates
acceleration1 Function evaluation in desired coordinates
acceleration2 Function evaluation in desired coordinates
gradient0 Function evaluation in desired coordinates
gradient1 Function evaluation in desired coordinates
gradient2 Function evaluation in desired coordinates
gradient3 Function evaluation in desired coordinates
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gradient4
gradients
cnm

snm
dpotdcnm
dpotdsnm
da0dcnm
da0dsnm
datdenm
datdsnm
da2dcnm
da2dsnm
dg0denm
dg0dsnm
dgidenm
dgidsnm
dg2denm
dg2dsnm
dg3dcnm
dg3dsnm
dgadenm
dgddsnm
dg5denm
dg5dsnm
legendre

object

C.6.2 Interface

Function evaluation in desired coordinates

Function evaluation in desired coordinates

Summation coefficients

Summation coefficients

Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Function partials in desired coordinates
Basis function for expansion

Physical object properties

int32 GravityField_create

( int32
int32
int32
int32

shape,
degree,

order,
measurement,
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int32 GravityField_calculate

int32 GravityField_free
int32 GravityField_partial_length

int32 GravityField_extract_partials

float64 GravityField_potential
float64 GravityField_acceleration0
float64 GravityField_accelerationl
float64 GravityField_acceleration2
float64 GravityField_gradient0
float64 GravityField_gradientl
float64 GravityField_gradient2
float64 GravityField_gradient3
float64 GravityField_gradient4
float64 GravityField_gradientS

int32
char *

int32

GravityField *
( GravityField
float64
float64
float64
( GravityField *
( GravityField
int32
int32 *
( GravityField
int32
int32
float64 *
( GravityField
( GravityField
( GravityField
( GravityField
( GravityField
( GravityField
( GravityField
( GravityField
( GravityField
( GravityField

coordinates,
filename,

file_format,

gfield );
gfield,
radius,
lambda,
phi);
gfield );
gfield,
estim_param,
length );
gfield,
which_set,
estim_param,
partials );
gfield );
gfield );
gfield );
gfield );
gfield );
gfield );
gfield );
gfield );
gfield );
gfield );

float64 GravityField_acceleration ( GravityField gfield,

float64 * acceleration );
float64 GravityField_gradient ( GravityField gfield,

float64 * gradient );
int32 GravityField_index ( GravityField gfield,

int32 n,

int32 m);
int32 GravityField_shape ( GravityField gfield );
int32 GravityField_degree ( GravityField gfield );
int32 GravityField_order ( GravityField gfield );
int32 GravityField_ldim ( GravityField gfield );
int32 GravityField_isobservable ( GravityField * gfield );
int32 GravityField_isdynamic ( GravityField * gfield );
int32 GravityField_jsforce ~ ( GravityField * gﬁeld )
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C.7 Satellite

C.7.1 Properties

epoch Reference epoch
epoch_state Satellite state at reference epoch
arc_length Seconds since reference epoch
state Satellite state at seconds since reference
number_forces Number of forces acting on satellite
force_tags List of forces acting on satellite
forces Force objects acting on satellite
object Physical object properties
C.7.2 Interface
int32 Satellite_create ( float64 epoch,
int32 coordinates,
float64 * state,
Satellite * satellite,
int32 number_forces,
/* vargs */);
int32 Satellite_free ( Satellite * satellite );
int32 Satellite_epoch ( Satellite satellite,
float64 * epoch );
int32 Satellite_state ( Satellite satellite,
int32 coordinates,
float64 * state );
int32 Satellite_force ( Satellite satellite,
int32 which_force,
int32 * force_tag,
PhysObj * force);
float64 Satellite_epoch ( Satellite satellite );
float64 Satellite_arc_length ( Satellite satellite );
int32 Satellite_number_forces ( Satellite satellite );
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C.8 Satellite Gradiometer Observable

C.8.1 Properties

psi Rotation angle between satellite and gradiometer frames
theta Rotation angle between satellite and gradiometer frames
phi Rotation angle between satellite and gradiometer frames
a Gradiometer measured accelerations

g Gradiometer measured gradients

sat2xg Rotation matrix

topographic2xg Rotation matrix

partials Gradient partial derivatives
partial_length Number of gradient partial derivatives
gravity_field Gravity field influencing gradiometer
satellite Satellite containing the gradiometer
object Physical object properties

C.8.2 Interface

int32 Gradiometer_create

( GravityField

gravity_field,

Satellite satellite,
float64 psi,
float64 theta,
float64 phi,
Gradiometer * gradio );
int32 Gradiometer_free ( Gradiometer * gradio );
int32 Gradiometer_calculate ( Gradiometer gradio );
int32 Gradiometer_extract_partials ( Gradiometer gradio,
float64 which_set,
float64 estim_param,
float64 * partials );
int32 Gradiometer_gradient ( Gradiometer gradio,
float64 ** gradient );
float64 Gradiometer_psi ( Gradiometer gradio );
float64 Gradiometer_theta ( Gradiometer gradio );
float64 Gradiometer_phi ( Gradiometer gradio );
float64 Gradiometer_g ( Gradiometer gradio );
GravityField Gradiometer _gravity_ﬁeld ( Gradiometer ﬁgradio )
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C.9 Satellite-to-Satellite Ranging Observable

C.9.1 Properties
elevation_mask Elevation mask for observation
below_mask Specifies whether current observation is below elevation
mask
range Current observation
drangedxhigh Partials with respect to high satellite position
partials Observation partials
integ_high Integration object
integ_low Integration object
object Physical object properties
C.9.2 Interface
int32 SatTrack_create ( float64 elevation_mask,
MsilibABFS integ_high,
MsilibABFS integ fow,
SatTrack * sst);
int32 SatTrack_free ( SatTrack * sst );
int32 SatTrack_calculate ( SatTrack sst );
int32 SatTrack_extract partials ( SatTrack sst,
float64 estim_param,
float64 * partials );
int32 SatTrack number_partials ( SatTrack sst );
int32 SatTrack_below_mask ( SatTrack sst);
float64 SatTrack_range ( SatTrack sst );
C.10 Batch Estimator
C.10.1 Properties
which_observation Specifies type of observable
sigma Observation variance
batch_count Number observation in current batch
observation_count Total number of observations
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batch_size Size of accumulation batch
number_equations Number equations in linear system

number_parameter_types Number of classes of estimated parameters

parameter_type List of parameter types
number_parameters Number equations per parameter type
batch_matrix Matrix of partial arrays in current batch
normal_matrix Linear system operator
normal_array Linear system right-hand-side
covariance Inverted linear system operator
subarc_matrix Linear system operator for subarc parameters
correl_matrix Correlation matrix between subarc parameters and global
parameters
object Mathematical object properties
C.10.2 Interface
int32 Batch_create ( float64 batch_size,
Batch * estimator );
int32 Batch_free ( Batch * estimator );
int32 Batch_initialize parameters ( Batch estimator,
float64 n_parm_types,
/* vargs */);
int32 Batch_realize ( Batch estimator,
float64 which_obs,
PhysObj observation,
float64 sigma );
int32 Batch_extract_observation ( Batch estimator,
PhysObj observation );
int32 Batch_increment_subarc ( Batch estimator );
int32 Batch_accumulate ( Batch estimator );
int32 Batch_solve ( Batch estimator );
int32 Batch_extract_variance ( Batch estimator,
float64 * variances );
int32 Batch_observation_count ( Batch estimator );
int32 Batch_number_equations ( Batch estimator );
float64 * Batch_covariance_matrix ( Batch estimator );
float64 * Batch_normal_matrix ( Batch estimator );
int32 Batch_isfull ( Batch estimator );
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C.11 Adams-Bashforth Numerical Integrator

C.11.1 Properties

state_transition

number_equations

Number equations in integration vector

Specifies integration of state transition information

number_parameter_types Number of classes of dynamic parameters

parameter_type List of parameter types
number_parameters Number equations per parameter type
t Current epoch
state Integration state at current epoch
satellite Physical object associated with integration
object Mathematical object properties
C.11.2 Interface
int32 MsilibABFS_create ( float64 state_transition,
float64 nord,
float64 nloop,
float64 alim,
float64 meshsize,
MsilibABFS * integrator );
int32 MsilibABFS_free ( MsilibABFS * integrator );
int32 MsilibABFS_initialize_parameters  ( MsilibABFS integrator,
float64 n_parm_types,
/* vargs */);
int32 MsilibABFS_realize ( MsilibABFS integrator,
Satellite satellite );
int32 MsilibABFS_propagate ( MsilibABFS integrator,
float64 tout );
int32 MsilibABFS_restart ( MisilibABFS integrator );
int32 MsilibABFS_parameter_types ( MisilibABFS integrator,
float64 which_param,
float64 * parameter_tag,
float64 * num_param );
int32 MsilibABFS_num_param_types ( MsilibABFS integrator );
Satellite MsilibABFS_satellite ( MisilibABFS integrator );

C.12 Gradiometer Application
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int32

| float64

RefFrame

GravityField

Satellite
MsilibABFS
Gradiometer

Batch

#include "oopod.h"

int main (int argc, char ** argv)

i, restart_index =1,
satellite_gravity_field_degree = 3,
gradiometer_gravity field_degree = 20,
batch_size = 5000;

sigma = 1.0e-12,

t=0.0e+0,

arc_length = 45.0e+0 * DAY2SECOND,

interval = 60.0e+0,

restart_interval = 0.5 * DAY2SECOND,

epoch = 2447527.500650278e+0,

state [ 6 ] = { 6637163.04066062¢+0, 0.0e+0, 0.0e+0,
0.0e+0, -13.516035414281e+0, 7749.946235174633e+0 };

reference_frame = NULL;

satellite_gravity_field = NULL,
gradiometer_gravity_field = NULL;

satellite = NULL;
integrator = NULL;
gradiometer = NULL;

estimator = NULL;

RefFrame_create ( "'/work/utexas/csr/byab323/EOPDAT.BIN",

EOP_FILE_FORMAT, & reference_frame );

RefFrame_calculate ( SET_TOD, epoch, reference_frame );
RefFrame_set_global ( reference_frame );

GravityField_create (TRIANGULAR, satellite_gravity_field_degree,

atellite_gravity field_degree, ALL_MEASUREMENTS,
TOPOGRAPHIC,
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""fwork/utexas/csr/byab323/GEO.BIN.180x180",
GEO_FILE_FORMAT, & satellite_gravity_field );

GravityField_create (TRIANGULAR, gradiometer_gravity field_degree,
gradiometer_gravity_field_degree,
ALL_MEASUREMENTS, TOPOGRAPHIC,
"/work/utexas/csr/byab323/GEO.BIN.180x180",
GEO_FILE_FORMAT, & gradiometer_gravity_field );

Satellite_create ( epoch, GEOCENTRIC, state, & satellite, 1,
GEOPOTENTIAL, satellite_gravity_field );

Gradiometer_create ( gradiometer_gravity_field, satellite, 0.0e+0, 0.0e+0,
00.0e+0 & gradiometer );

MsilibABFS_create (NO_STATE_TRANSITION, 7, 10, 1.0e-6, 30.0e+0, &
integrator );

MsilibABFS_realize ( integrator, satellite );

Batch_create ( batch_size, & estimator );
Batch_initialize_parameters ( estimator, 1, GRAV_COEF_ALL );
Batch_realize ( estimator, GRADIOMETER, gradiometer, sigma );

while (t <= arc_length )
{

if ( t > restart_index * restart_interval )

{

MsilibABFS_restart ( integrator );

restart_index++;
}

MsilibABFS_propagate ( integrator, t );
Gradiometer_calculate ( gradiometer );

if ( Batch_isfull ( estimator ) ) Batch_accumulate ( estimator );
Batch_extract_observation ( estimator, gradiometer );

t += interval;
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Batch_accumulate ( estimator );
Batch_solve ( estimator );
Batch_free ( & estimator );
Gradiometer_free ( & gradiometer );
MsilibABFS_free ( & integrator );
Satellite_free ( & satellite );
GravityField_free ( & gradiometer_gravity_field );
GravityField_free ( & satellite_gravity_field );
RefFrame_free ( & reference_frame );
}
C.13 GPS Application
#include "oopod.h"
int main ( int arge, char ** argv)
{
int32 i, number_gps_satellites = 23,
restart_index=1,
satellite_gravity_field_degree = 3,
batch_size = 5000;
float64 sigma = 1.0e-3,
elevation_mask = 10.0e+0 * DEGREE2RADIAN,
t = 0.0e+0,
arc_length = 12.0e+0 * DAY2SECOND,
interval = 60.0e+0,
restart_interval = 0.5 * DAY2SECOND,
epoch = 2447527.500650278e+0,
state_gps [ 25 * 6 ] = { /* GPS states may be hardcoded
here */ },
state_low [ 6] = { 6633085.575,-405.372, 232450.642,
-271.802957, 13.505910, 7745.171574 },
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RefFrame reference_frame = NULL;

GravityField  satellite_gravity_field = NULL;

Satellite * satellite_gps = NULL,
satellite_low = NULL;

MisilibABFS * integrator_gps = NULL,
integrator_low = NULL;

SatTrack sst = NULL;

Batch estimator = NULL;

RefFrame_create ( "'/work/utexas/csr/byab323/EOPDAT.BIN",
EOP_FILE_FORMAT, & reference_frame );

RefFrame_calculate ( SET_TOD, epoch, reference_frame );

RefFrame_set_global ( reference_frame );

GravityField_create ( TRIANGULAR, satellite_gravity_field_degree,
satellite_gravity_field_degree, ALL_MEASUREMENTS,
TOPOGRAPHIC,
"/work/utexas/csr/byab323/GEO.BIN.I80x180",
GEO_FILE_FORMAT, & satellite_gravity_field );

Satellite_create ( epoch, GEOCENTRIC, state_low, & satellite_low, 1,
GEOPOTENTIAL, satellite_gravity_field );

MsilibABFS_create ( STATE_TRANSITION, 7, 10, 1.0e-6, 30.0e+0, &
integrator_low );

MsilibABFS_{nitialize_parameters ( integrator_low, 2, INITIAL_STATE,
GRAV_COEF_ALL );

MsilibABFS_realize ( integrator_low, satellite_low );

satellite_gps = calloc ( number_gps_satellites, sizeof ( Satellite ) );
integrator_gps = calloc ( number_gps_satellites, sizeof ( MsilibABFS ) );
for (i=0 ;i < number_gps_satellites ; i++)

{
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}

Satellite_create ( epoch, GEOCENTRIC, & state_gps [6 *i], &
satellite gps [i}], 1, GEOPOTENTIAL,
satellite_gravity_field );

MsilibABFS_create ( STATE_TRANSITION, 7, 10, 1.0e-6, 30.0e+0, &
Integrator_gps [i] );

MsilibABFS_jinitialize_parameters ( integrator_gps [i], 2,
INITIAL_STATE, GRAV_COEF_ALL );

MsilibABFS_realize ( integrator_gps [ i ], satellite_gps [i]);

SatTrack_create ( elevation_mask, integrator_gps [ 0 ], integrator_low, &

sst );

Batch_create ( batch_size, & estimator );

Batch_initialize_parameters ( estimator, 2, INITIAL_STATE, SUBARC,

GRAV_COEF_ALL, GLOBAL );

Batch_realize ( estimator, SST, sst, sigma );

while (t <= arc_length )

{

if (t > restart_index * restart_interval )

{
MsilibABFS_restart ( integrator_low );
for (i=0 ;i < number_gps_satellites ; i++)
MsilibABFS_restart ( integrator_gps [i] );
Batch_increment_subarc ( estimator );
restart_index++;
}

MsilibABFS_propagate ( integrator_low, t );
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for (=0 ;i < number_gps_satellites ; i++)
{
MsilibABFS_propagate ( integrator_gps [i],t);
SatTrack_calculate (integrator_gps [ i ], integrator_low, sst );
if (! SatTrack_below_mask ( sst))
{
if ( Batch_isfull ( estimator ) )

Batch_accumulate ( estimator );

Batch_extract_observation ( estimator, sst );

}

t += interval;
}
Batch_accumulate ( estimator );
Batch_solve ( estimator );
Batch_free ( & estimator );
MsilibABFS_free ( & integrator_low );
Satellite_free ( & satellite_low );
for (1 = 0 ;1 < number_gps_satellites ; i++)
{
MsilibABFS_free ( & integrator_gps [1]);

Satellite_free ( & satellite_gps [i]);
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SatTrack_free ( & sst);
free (integrator_gps );
free ( satellite_gps );
free ( sst);
GravityField_free ( & satellite_gravity_field );

RefFrame_free ( & reference_frame );
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Appendix D Gravity Field Indexing Techniques

D.1 Number of Coefficients in a Degree and Order 1 Expansion

The coefficients in a spherical harmonic expansion may be organized
in terms of two lower triangular matrices. The first matrix stores the
coefficients of the cosine terms, and the second stores the coefficients of the
sine terms. While the order zero sine terms are undefined, it is convenient use
matrices of equal dimensions with the first column of the sine coefficient
matrix set to zero.

The number of coefficients is simply the count of the elements
contained within the two lower triangular matrices minus the number of

elements in the first column of the sine coefficient matrix. The number of
. : .. n(n+1) . . .
elements in a lower triangular matrix is - where 7 is the dimension of

the matrix. An expression for the number of coefficients in terms of the

maximum degree and order / may be developed.

S (CES ) I

This expression reduces a very simple form.

n=(I+1)
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D.2 Lower Triangular Matrix Mapped to a Linear Array

Reducing memory usage may be accomplished by packing the storage
of lower triangular matrix in to linear array. A useful expression may be
developed which relates the row and column indices of the matrix to the index
of the linear array. The ordering of the matrix elements could be in row-major
or column-major order. Four expressions will be developed. The first two
expressions use indices which start a zero as is common in the C programming
language and in the indexing of gravity field coefficients. The second two
expressions use indices which start at one as is the convention in the
FORTRAN programming language. The development of the expressions

follow the same general formulas.

Column-major ordering

Index = Linear Array - Number of elements in + Number of elements  + Array index starting bias
Dimension the smallest lower below the diagonal term
triangular matrix
containing the target
element

Row-major ordering

Index = Number of elements in the+ Number of elements ~ + Array index starting bias
largest lower triangular from the first column
matrix above the target
element
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The expressions for indices starting at zero will use / and m to
represent the row and column indices of the lower triangular matrix. The
parameter D is defined as the maximum / or m permitted. The starting bias B

specifies the linear array index of the (0,0) element. Therefore, B=0 if starting

at the beginning of the array.

Column-major ordering

7
8

~ A W N —~ O
H W NN - O O
(@)

2 3 4 m
9

10 12

11 13 14

1=(D+1)(D+2)_(D—

2

I
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Row-major ordering

10 11 12 13 14

0 1 2 3 4 m
0 0
1 1 2
2 3 5 (63)
36 7 8 9
4
!

I=Ll;-—ll+m+B (64)

The expressions for indices starting at one will use i and j to represent
the row and column indices of the lower triangular matrix. The parameter D
is defined as the maximum i or j permitted. The starting bias B specifies the

linear array index of the (1,1) element. Therefore, B=1 if starting at the

beginning of the array.
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Column-major ordering

Row-major ordering

1 2 3 4 5
11
2 2 6
33710
4 4 8 11 13
559 12 14 15
1
I=D(D+1)_(D—j+1)(D—j+2)+(i_j)+B
2 2
I=L(2D—;1—_—j)—D+(i—l)+B
1 2 3 4 5
11
2 2 3
3 4 5 6
4 7 8 9 10
511 12 13 14 15

~,

I=g——zl)i+(j—1)+B
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D.3 Mapping to Degree-major Coefficient Storage

The triangular storage patterns are useful when working separately
with the cosine and sine terms of the spherical harmonic expansion. However,
when working with the entirety of the coefficients, it is often convenient to
group the terms such that terms of the same degree appear contiguous in a
linear array. An example is the formation of the partial derivatives with
respect to the gravity field coefficients. Different observation datatypes may
calculate partials to different degree and orders. By using a degree-major
storage pattern, contiguous arrays aligned at the (0,0) coefficient will map
correctly into the information matrix.

The following is an example of the linear array indices of the degree-

major storage for a set of coefficients to degree and order 4.

C, O S, -
1 2 - 3
4 5 6 - 7 8 (70)
9 10 11 12 - 13 14 15
16 17 18 19 20 - 21 22 23 24

The key to indexing degree-major storage is to recognize that the
number of elements per degree is the sequence of odd integers. The linear
array index for the first element of degree / may be determined from the prefix

sum of the odd integers.
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i(Zi—1)= n’ (71)

i=1

Therefore the first element of degree / appears at linear array index E.

The indexes for general / and m appear below.

I. =I'+m
- (72)

I; =P+l+m, m=0

Expressions for indexing starting with one may be developed similarly.
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Appendix E PLAPACK Virtual Objects

The integration of virtual memory functionality into the PLAPACK
library provides the capability to manipulate data located on disk storage
devices. At the application level, the new functionality requires only a few
new PLAPACK methods. The implementation of the data mapping routines
changes significantly. The organization of the PLAPACK object parameters
reflect the natural partitions of disk and parallel memory. The changes in the
infrastructure maintain the abstraction of the linear algebra object at the

application level.

E.1 PLAPACK Object Spaces : View, Global and Virtual

The memory hierarchy in a distributed memory environment consists
of many different levels from the disk through register memory. The PBMD
philosophy addresses inter-processor communication and relies on vendor
routines to optimize single processor operations. The PLAPACK object only
maintains mappings from the abstract linear algebra entity (i.e., a matrix) to
the slower memory areas: local memory, parallel memory and disk.

The PLAPACK object consists of different sets of parameters to
describe the data mappings. Header information specifies the linear algebra

object type and ownership of the object. Virtual space parameters describe the
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disk resident data mapping of a linear algebra object. Global space describe
the memory resident data mapping of a linear algebra object. View space
parameters describe the portion of the data available to the application. The
typical user of PLAPACK will only work in terms of view space parameters.
A list of a sampling of PLAPACK object members and their associated space

is presented in Table 16.
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Member Description Space

Object Type Type of PLAPACK object Header
Template Structure defining distribution Header
Datatype Type of data Header
Virtual Length Row dimension of the virtual space Virtual
Virtual Width Column dimension of the virtual space Virtual
Virtual Align Row Row alignment of the virtual space Virtual
Virtual Align Column Column alignment of the virtual space Virtual
PLAPACK File Structure | PLAPACK structure containing the machine specific Virtual

information required to access data located on disk
Views Counter tracking the number of objects referencing the Global
same global space

Master Length Row dimension of the global space Global
Master Width Column dimension of the global space Global
Master Align Row Row alignment of the global space Global
Master Align Column Column alignment of the global space Global
Master Buffer Address of the beginning of the local global data buffer Global
Local Leading Dimension | Leading dimension of the local global data buffer Global
Global Length Row dimension of the view space View

Global Width Column dimension of the view space View

Global Align Row Row alignment of the view space View

Global Align Column Column alignment of the view space View

Buffer Address of the beginning of the local view data buffer View
Local Length Row dimension of the local view data buffer View
Local Width Column dimension of the local view data buffer View

Table 16 Sample of PLAPACK Object Mexhbers
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For solely memory resident objects, global space parameters specify all
memory mapping information. For virtual objects, global space behaves as a
layer of cache memory between the disk and the application.

All parameters depend on the type of linear algebra object. Object
creation routines set header and virtual space parameters according to the
object type. Likewise, library routines call object specific methods to set
global space and view space parameters.

Manipulations of view space parameters are restricted by the
boundaries of virtual and global spaces. The view of a memory resident
object cannot exceed the boundaries of global space. The view of a virtual
object cannot exceed the bounds of virtual space. In addition, if global space
has been attached to a virtual object, and attempt to create a view outside the
global space boundaries will cause the current global space to be released and
a new global space equivalent to the size of the view will be attached.

Spaces may not be attached to the PLAPACK object in an arbitrary
order. Table 17 presents the required ordering when attaching spaces to an

object.
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Object Status Permitted Actions
Empty Object Define Header
Free Object
Header Defined Attach Virtual Space
Attach Global Space
Free Object
Header Defined Attach Global Space
Virtual Space Attached | Attach View Space
Remove Virtual Space
Header Defined Attach View Space
Global Space Attached Remove Global Space
Header Defined Attach View Space
Virtual Space Attached | Remove Global Space
Global Space Attached
Header Defined Attach Global Space
Virtual Space Attached | Remove View Space
View Space Attached
Header Defined Remove View Space
Global Space Attached
View Space Attached
Header Defined Remove View Space
Virtual Space Attached
Global Space Attached
View Space Attached

Table 17 Ordering Restrictions on Layering of Object Spaces

E.2 Utility Functions for Space Management

The following low level infrastructure routines facilitate the attaching

and detaching of object spaces. Routines specified in all capitals are macros.

pla_object_create
pla_object_free

pla_initialize_virtual

pla_initialize_global

pla_initialize_view

Creates an empty PLAPACK object structure.
Frees an empty PLAPACK object structure.

Initializes virtual space parameters to default
values. -

Initializes global space parameters to default
values.

Initializes view space parameters to default
values.
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pla_set_<object>_virtual

pla_set_<object>_global

pla_set_<object>_view

pla_remove_virtual

pla_remove_global

pla_remove_view

pla_duplicate_object

pla_duplicate_virtual

pla_duplicate_global

pia_duplicate_view

PLA_IS_VIRTUAL_SPACE
PLA_IS_GLOBAL_SPACE
PLA_IS_VIEW_SPACE
PLA_IS_SAME_VIRTUAL_SPACE

PLA_IS_SAME_GLOBAL_SPACE

PLA_IS_SAME_VIEW_SPACE

pla_ls_view_inside_global

Sets virtual space parameters according to
specified dimensions and alignments. A static
PLA_File structure is allocated for each virtual
space.

Sets global space parameters according to virtual
space parameters and specified global space
dimensions and alignments.

Sets view space parameters according to global
space parameters and specified view space
dimensions and alignments.

Removes virtual space references from the object
and re-initializes header parameters. An empty
object is returned.

Removes global space references from the
object. If object is memory resident, header
parameters are re-initialized and an empty object
is returned.

Removes view space references from the object.

Duplicates header information from one object to
another.

Duplicates virtual space information from one
object to another. Global space and view space
is left undefined.

Duplicates virtual and global space information
from one object to another. View space is left
undefined.

Duplicates virtual, global and view space
information from one object to another.

Returns TRUE if virtual space is attached.
Returns TRUE if global space is attached.
Returns TRUE if view space is attached.

Determines if two objects share identical virtual
space. Always false for memory resident objects.

Determines if two objects share identical global
space.

Determines if two objects share identical view
space.

Determines if specified view occurs within
current global space.

201



pla_is_view_inside_virtual Determines if specified view occurs within
current virtual space. Always false for memory
resident objects.

pla_set_view Low level view management routine which calls
appropriate object space management routines.
Inputs are dimensions and alignments respective
to the template.

E.3 File I/O Implementation

PLAPACK implements block partitioned algorithms to achieve high
performance. Virtual object operations require movement of the linear algebra
blocks between disk and parallel memory. The structure of blocks depends on
the data access pattern required by the linear algebra operation. Two primary
types of blocking should be considered. The first blocking attempts to
maximize the memory resident performance by transferring large, square
blocks. The second blocking attempts to most effectively overlap
computation and communication by transferring rectangular panels.

To illustrate the different access patterns, allow nbmamix to be the
dimension of the largest square block and nbyane to be the lesser dimension of
the rectangular panel. The different blocking sizes may be defined as 7nbmarix X
NbBpancls MBpancl X NBmarix OF NBmarrix X Nbmawix. A virtual GEMM routine using a
rank-k update requires the first blocking pattern for matrix 4, the second

blocking pattern for matrix B and the third blocking pattern for matrix C.
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nbplnel Nbmarix

k—3

o

Figure 23 Out-of-Core Blocking Patterns for GEMM

The most efficient file I/O operations occur when the transferred data
is organized into contiguous memory segments. The blocking requirements of
the algorithm dictate which mapping should be used. While satisfactory for
the GEMM operation, many algorithms access data from objects differently at
different stages of the computation. For example, the Cholesky factorization

requires all three blocking patterns.

Nbmarrix

syrk

trsm

Figure 24 Out-of-Core Blocking Patterns for Cholesky
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To simplify the implementation, only a single blocking size, nbyimal is
implemented. All linear algebi‘a operations are applied to square blocks which
optimize the global BLAS operations. However, a greater amount of memory

will be necessary for double buffering in asynchronous I/O operations.

E.1.1 Miscellaneous Implementation Issues

The first issue addresses the relationship between the virtual object
view and the I/O block boundaries. Performing I/O on views which do not
occur at block boundaries becomes difficult. I/O operations must include the
entire block. Transferring the data associated with views which do not occur
on block boundaries may require multiple I/O requests. Multiple requests
creates problems for asynchronous operation since multiple buffers and
multiple request objects are required.

For synchronous I/O operations, the object view expands to the nearest
I/O block boundaries which encompass the original view. Recursive /O
requests on the larger view and memory-to-memory copies achieve the desired
result. Asynchronous /O operations for views which do not occur on block
boundaries are not support due to the requirements of multiple concurrent I/O

operations and multiple request objects.

204



The second issue addresses the structure of the disk files. Each
processor assigned ownership of the linear algebra object possesses ownership
of a file which contains the object data. The file consists of constant length
records with the records corresponding to the column-major ordering of the
linear algebra blocks. The record length is determined by calculating the
memory usage on processor (0,0) of an nbyimual X Nbyima matrix with row and
column alignments of zero. Each processor responsible for /O transfers
local_length X local_width elements to/from the local file block. If the block is
not full, the data is packed into the first local_length X local width elements of

the record.

E.4 Application Routines

The PLAPACK I/O interface routines are intended to be general
enough to support a wide range of functionality. However, /O operations,
especially those associated with asynchronous operations, vary widely
between architectures. The current specification defines different IO types
which are either standardized or may be associated with a particular
architecture. Each /O type may or may not permit asynchronous operations.

A list of supported I/O types are presented in Table 18.
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I/O Type Architecture Async Allowed

PLA_ANSI_C All Never

PLA_UNIX_IO All UNIX Cray, BM

Table 18 PLAPACK I/O Types

PLAPACK T/O routines consists of two groups analogous to global
and local BLAS operations. Global I/O operations are collective and manage
view boundary conditions and asynchronous requests. Local I/O operations
are local to the individual processor and manage the architecture dependencies
of the operation. Calling the local I/O operation directly is not recommended.
All VO routines operate only on virtual objects and may require different

parameter lists for each /O type.

int PLA_Open ( PLA_Obj object,
int fotype,
/* vargs */);
int PLA_Open ( PLA_Obj object,
PLA_ANSI_C,
char * filename,
char * mode );
int PLA_Open ( PLA_Obj object,
PLA_UNIX_IO,
char * filename,
int mode );
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int PLA_Local_open ( PLA_Obj object,
int iotype,
/* vargs */ );
int PLA_Local_open ( PLA_Obj object,
PLA_ANSI C,
char * filename,
char * mode );
int PLA_Local_open ( PLA_Obj object,
PLA_UNIX_IO,
char * filename,
int mode );
int PLA_Close ( PLA_Obj object );
int PLA_Local_close ( PLA_Obj object );

The PLA_Open method initializes a virtual object for file I/O operations
according to the information contained in the PLAPACK object and the /O
type specified in the parameter list. Each processor responsible for /O opens
a file filename_<row index>,<column index> according to the permissions
specified in the parameter list. The PLA_Close method finalizes the I/O

operations and closes the file.

int PLA_Read ( PLA_Obj object );
int PLA_Local_read ( PLA_Obj object );
int PLA_Write ( PLA_Obj object );
int PLA_Local_write ( PLA_Obj object );

The PLA_Read and PLA_Write methods perform the synchronous I/O
operations according to the current view of the object and the IO type

specified in the PLA_Open method.
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int PLA_Iread ( PLA_Obj object,
PLA_Request * request );
int PLA_Local_jread ( PLA_Obj object );
int PLA_Iwrite ( PLA_Obj object,
PLA_Request * request );
int PLA_Local_iwrite ( PLA_Obj object );

The PLA_Iread and PLA_lIwrite methods perform the synchronous /O
operations according to the current view of the object and the /O type
specified in the PLA_Open method. The PLA_Request and PLA_Status objects
are used to identify and return information conceming posted asynchronous
operations. Asynchronous I/O operations are only supported for views which

require transfer of a single disk record.

int PLA_Wait ( PLA_Request * request, PLA_Status * status );
int PLA_Test (PLA_Request * request, PLA_Status * status );

int PLA_Local wait ( PLA_Request * request, PLA_Status * status );
int PLA_Local_test ( PLA_Request * request, PLA_Status * status );

The PLA_wait and PLA_Test methods are, respectively, blocking and non-

blocking test for completion operations.
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Appendix F Cholesky Factorization

F.1 Level 2 BLAS, Right Looking

The Cholesky factorization may be developed in terms of a block
partitioned algorithm. The derivation begins by observing that the Cholesky
factorization of 4 is a lower triangular matrix L such that 4=LL". The
matrices are partitioned into quadrants such that the top left corner consists of
a single scalar value. The asterisk represents the transposed portions of the

matrix.

A P b
AIO All LIO Lll 0 Lfl

The relationship between the factored matrix and the original matrix
may be recovered by explicitly performing the matrix multiplication.
g =Ig,

Ay = LIOIOO
A, = LloLlTo + LnLlTl

The operations in Equation (74) may be rearranged to form the
factorization of A which overwrites the previous values in memory. The
algorithm computes the square root of the top left element. The elements of

the column vector are scaled by the reciprocal of the result. The remainder of
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the matrix is updated via a rank-1 update. The factorization of the remaining
submatrix proceeds recursively.

ag < +Jag

1
AlO « TAlo
00
4y, < 4y — A Ay
The algorithm expressed in Equation (75) is the Level 2 right-looking
Cholesky factorization. The algorithm is classified as Level 2 BLAS since the
majority of operations occurs during the rank-1 matrix update. The
factorization is termed right-looking because all operations occur on or to the
right of the current matrix column. Figure 25 presents the FORTRAN code

fragment to perform the decomposition of lower triangular matrix 4 of

dimension N with leading dimension LDA.

DO I=1,N
ALD=SQRT (AL )
DSCAL ( N-I, 1.0d+0 / AQLI), Ad+1,T), LDA )
DSYR ( “LOWER?, N-I, -1.0d+0, A(+1,D), 1, A(I+1,1+1), LDA )
ENDDO

Figure 25 Level 2 Right-Looking Cholesky Factorization

F.2 Level 2 BLAS, Right Looking
The extension of the Cholesky algorithm to Level 3 BLAS operations

begins by allowing the top left partition of 4 to consist of an nb x nb
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submatrix. The remainder of the derivation is analogous to the Level 2 BLAS
factorization. The matrices are again partitioned into quadrants. However, the
top left corner is now a matrix block. The asterisk represents the transposed

portions of the matrix.

e
AIO All LlO Lll 0 Lfl

The relationship between the factored matrix and the original matrix
may be recovered by explicitly performing the matrix multiplication.
Ay = LooLgo

Ay = LlOLgO
A4, = LloLlro + LIILITI

The operations in Equation (77) are again rearranged to form the
factorization of 4 which overwrites the previous values in memory. The
algorithm computes the Level 2 factorization of the top left submatrix Aoo.
The column panel 4o is updated via a Level 3 triangular solve with multiple
right-hand-sides. The remainder of the matrix is updated via a Level 3
symmetric rank-k operation. The factorization of the remaining submatrix

proceeds recursively.
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Ay < BLAS2 Cholesky (4y )
Ay < AIOA(;OT (78)
Ay < 4, - AIOAIT(;

The Level 3 right-looking Cholesky algorithm may also be coded in a
straight forward manner. Figure 26 presents the FORTRAN code fragment to

perform the decomposition of lower triangular matrix 4 of dimension ¥ with

leading dimension LDA.

DO I=1,N,NB
NBT=MIN(NB,N-I+1)
BLAS2_CHOL ( NBT, A(LI), LDA )
DTRSM( “RIGHT”, “LOWER?”, "TRANS”, “NONUNIT”,
N-I+1-NBT, NBT,
1.0d+0, A(LI), LDA, AQ+NBT,I), LDA )
DSYRK ( “LOWER”, “NOTRANS”, N-I+1-NBT, NBT,
-1.0d+0, AQ+NBT,I), LDA,
1.0d+0, A0+NBT,I+NBT), LDA )
ENDDO

Figure 26 Level 3 Right-Looking Cholesky Factorization

F.3 Level 3 BLAS, Left Looking

A lefi-looking variant to the Cholesky factorization may also be
developed. The derivation of the Level 3 left-looking algorithm begins with
the partitioning presented in Equation (79) such that block (1,1) is nb x nb.

The asterisks represent the transposed portions of the matrix.
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Ay * * L, 0 o071y LI, L),
AlO An * = LIO Lu 0 0 L1T1 L;l
AZO A21 A22 L20 L21 L22 0 O ng

Assuming that the factorization of the first column partition has been
accomplished, the relationship between block (1,1) and (2,1) of the factored
matrix and the original matrix may be recovered by explicitly performing the
matrix multiplication.

A, =LoLl +L,L],
Ay =Ly LTy + Ly, LT,

The operations in Equation (80) are rearranged to form the
factorization of the second column panel of 4 which overwrites the previous
values. The algorithm begins by updating the current column based on
previous factorizations. Submatrix A4,, is updated via a Level 3 BLAS
symmetric rank-k update. Submatrix A4, is updated via a Level 3 BLAS
matrix-matrix multiplication. The factorization of the column panel proceeds
similarly to the left-looking algorithm.

Ay — Ay~ 4,04
Ay Ay — Ay A

Ay, < BLAS2 Cholesky(Aqy, )

AIO « AIOA(;OT
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The BLAS Level 3, lefi-looking Cholesky algorithm may also be
coded in a straight forward manner. Figure 27 presents the FORTRAN code
fragment to perform the decomposition of lower triangular matrix 4 of

dimension N with leading dimension LDA.

DO I=1,N,NB
NBT=MIN(NB,N-I+1)
DSYRK ( “LOWER?”, “NOTRANS”, NBT, I-1,
-1.0d+0, A(L,1), LDA, 1.0d+0, A(L,I), LDA)
DGEMM ( “NOTRANS”, “TRANS”, N-I+1-NBT, NBT, I-1,
-1.0d+0, AQ+NBT,1), LDA, A(l,1), LDA,
1.0d+0, AQ+NBT,I), LDA )
BLAS2_CHOL ( NBT, A(L,), LDA )
DTRSM( “RIGHT”, “LOWER?”, "TRANS”, “NONUNIT”,
N-I+1-NBT, NBT,
1.0d+0, A(LI), LDA, AQ+NBT,]), LDA )
ENDDO

Figure 27 Level 3 Left-Looking Cholesky Factorization
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Appendix G Triangular Solve Multiple RHS

The parallel implementation of TRSM requires the statement of the
algorithm in terms of matrix blocks. Two variants of the Level 3 BLAS
triangular solve multiple right-hand-sides apply to the matrix inversion as
implemented in this research. @ The BLAS parameters LEFT, LOWER,
NOTRANS and NONUNIT specify the first case. The BLAS parameters
LEFT, LOWER, TRANS and NONUNIT specify the second case. For
brevity, the first case will be referred to as the LLNN case, and the second as

the LLTN case.

G.1 LLNN Case

The derivation of the LLNN case of TRSM begins by observing the
operation produces the matrix X such that AX=B where 4 is a lower triangular
matrix with a non-unit diagonal. Matrix A4 is partitioned into quadrants such

that Ao is an nd x nb submatrix.

[Ao,o 0 }{%] _ I:Bo]
AI.O Al.l ‘Xl B 1
The relationship between the unknown matrix X and the known

matrices 4 and B may be recovered by explicitly performing the matrix

multiplication.
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Ao.oXo = B,

(83)
40X, + 4,X = B,
The operation may be rewritten such that the result overwrites
matrix B.
X, « A X
[1] AO,O 0 (8 4)
Xl « Xl - AI,OXO
G.2 LLTN Case

The derivation of the LLTN case of TRSM begins by observing the
operation produces the matrix X such that A"X =B where 4 is a lower
triangular matrix with a non-unit diagonal. Matrix 4 is partitioned into

quadrants such that 4, , is an nb x nb submatrix.

Ag:o AIT,'O X, _ B,
r = (85)
0 4,)X%] LB
The relationship between the unknown matrix X and the known
matrices 4 and B may be recovered by explicitly performing the matrix
multiplication.

Ag:oXo + A{oXl = Bo

, (86)
Al,le =B,
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The operation may be rewritten such that the result overwrites

matrix B.

X, « 47X,

(87)
X, « X, -4, X,
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Appendix H Memory Efficient Subarc Update
Algorithm

In the satellite tracking observable, the initial conditions of the satellite
and the errors in the geopotential perturb the range measurements. The effect
of estimating satellite initial conditions as well as other subarc parameters
contribute directly to the geopotential covariance. The following derivation
demonstrates that the subarc contributions may be applied to the geopotential
covariance through a series of updates which may or may not include the
explicit estimation of the subarc parameters. In addition, the method
conserves memory by permitting the discard of previous subarc information.

Equation (88) presents the relationship between the information matrix
and the covariance matrix for the batch estimate. The upper diagonal block of
each matrix corresponds to the subarc parameters, and the lower diagonal
block corresponds to the geopotential coefficients. The off-diagonal blocks
correspond to the correlation information between the subarc parameters and
the geopotential coefficients. The estimation of multiple subarcs will create a

block diagonal structure for submatrix No,.
[No,o N{o]{&o PJA] [I 0]
N, Nyjhe B 0 I
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The matrix multiplication leads to the following system of matrix

equations.

NooFoo + N]I..O‘PI.O =1
NioFoo+ Ny PBy=0

No.on.To * N{cpm =0 )
N, BL+N,P,=1
The rearrangement of the third and fourth expressions in Equation (89)
lead to the expressions in Equation (90).
A, = Nl_ll ([ - Nl,oPl.TO) (90)
I)I.TO = -No-.zJN{on,l
Combining the equations and solving for P,.
R,= Nl_.ll(] - Nl,oNo_.})Nfopn,x)
B, = NN\ NooNiphR, = Ny oD
P,= (1 - Nf.le.oN&Nfo)—] Nl—ll
The inversion of the final expression in Equation (91) yields an
expression for the inverse geopotential covariance matrix in terms of the
geopotential information matrix, the subarc information matrix and the
correlation information.
Pl =N, =N NN, 92)
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The expression in Equation (92) represents an update to the
geopotential information matrix. Due to the block diagonal nature of Moy,
Equation (92) may be expressed as a series of updates with each update
corresponding to a k™ subarc.

Nl oo N,

Pl=N, -[leo Nl | o 0 : (93)
o 0 Nai N,

P1,_1l =N, - - (Nl.ONO-.:)NlTOXk 94

The algorithm implementing Equation (94) proceeds in a straight
forward manner. For each subarc, the accumulation of information matrices
Noo, Nip and Ny, occurs in the conventional manner. At the completion of
the subarc, the information matrix Ny, is updated using Equation (94). The

memory used for storing the subarc information may be reused.
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